Unable to use Stanford NER in python module

喜夏-厌秋 提交于 2019-12-06 15:26:59
  • The Python Stanford NER module is a wrapper for the Stanford NER that allows you to run python commands to use the NER service.
  • The NER service is a separate entity to the Python module. It is a Java program. To access this service, via python, or any other way, you first need to start the service.
  • Details on how to start the Java Program/service can be found here - http://nlp.stanford.edu/software/CRF-NER.shtml
  • The NER comes with a .bat file for windows and a .sh file for unix/linux. I think these files start the GUI

  • To start the service without the GUI you should run a command similar to this:
    java -mx600m -cp stanford-ner.jar edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier classifiers/english.all.3class.distsim.crf.ser.gz
    This runs the NER jar, sets the memory, and sets the classifier you want to use. (I think youll have to be in the Stanford NER directory to run this)

  • Once the NER program is running then you will be able to run your python code and query the NER.

  • This is the complete Stanford NER script in python 3x

This code will read each text file from "TextFilestoTest" folder and detect entities and store in a data frame (Testing)

import os
import nltk
import pandas as pd
import collections

from nltk.tag import StanfordNERTagger
from nltk.tokenize import word_tokenize


stanford_classifier = 'ner-trained-EvensTrain.ser.gz'
stanford_ner_path = 'stanford-ner.jar'

# Creating Tagger Object
st = StanfordNERTagger(stanford_classifier, stanford_ner_path, encoding='utf-8')

java_path = "C:/Program Files (x86)/Java/jre1.8.0_191/bin/java.exe"
os.environ['JAVAHOME'] = java_path


def get_continuous_chunks(tagged_sent):
    continuous_chunk = []
    current_chunk = []

    for token, tag in tagged_sent:
        if tag != "0":
            current_chunk.append((token, tag))
        else:
            if current_chunk: # if the current chunk is not empty
                continuous_chunk.append(current_chunk)
                current_chunk = []
    # Flush the final current_chunk into the continuous_chunk, if any.
    if current_chunk:
        continuous_chunk.append(current_chunk)
    return continuous_chunk

TestFiles = './TextFilestoTest/'
files_path = os.listdir(TestFiles)    
Test = {}

for i in files_path:
    p = (TestFiles+i)
    g= (os.path.splitext(i)[0])
    Test[str(g)] = open(p, 'r').read()

## Predict labels of all words of 200 text files and inserted into dataframe
df_fin = pd.DataFrame(columns = ["filename","Word","Label"])
for i in Test:
    test_text = Test[i]
    test_text = test_text.replace("\n"," ")
    tokenized_text = test_text.split(" ")
    classified_text = st.tag(tokenized_text)
    ne_tagged_sent = classified_text
    named_entities = get_continuous_chunks(ne_tagged_sent)

    flat_list = [item for sublist in named_entities for item in sublist]

    for fl in flat_list:
        df_ = pd.DataFrame()
        df_["filename"]  = [i]
        df_["Word"]  = [fl[0]]
        df_["Label"]  = [fl[1]]
        df_fin = df_fin.append(df_)

df_fin_vone = pd.DataFrame(columns = ["filename","Word","Label"])
test_files_len = list(set(df_fin['filename']))

If any questions comment below, I will answer. Thank you

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!