Python: fit data to given cosine function

為{幸葍}努か 提交于 2019-12-06 11:51:57

Comma

I guess your I_0=291,5*10**-6/(pi*0.35**2) is supposed to be the initial guess for the fit. I don't know why this is expressed in such a complicated way. Using , as decimal separator is the wrong syntax in Python, use . instead. Also, instead of something like 123.4 * 10 ** -5 you can write 123.4e-5 (scientific notation).

Anyway, it turns out you don't even need to specify the initial guess if you do the fit correctly.

Model function

  1. In your model function, I_measured = I_0 * cos(theta)**2, theta is in radians (0 to 2π), but your x values are in degrees (0 to 360).

  2. Your model function doesn't account for any offset in the x or y values. You should include such parameters in the function.

An improved model function would look like this:

def form(theta, I_0, theta0, offset):
    return I_0 * np.cos(np.radians(theta - theta0)) ** 2 + offset

(Credits to Martin Evans for pointing out the np.radians function.)

Result

Now the curve_fit function is able to derive values for I_0, theta0, and offset that best fit the model function to your measured data:

>>> param, covariance = optimize.curve_fit(form, x, y)
>>> print 'I_0: {0:e} / theta_0: {1} degrees / offset: {2:e}'.format(*param)
I_0: -2.827996e-04 / theta_0: -9.17118424279 degrees / offset: 2.926534e-04

The plot looks decent, too:

import matplotlib.ticker as ticker

plt.scatter(x, y, label='data')
plt.ylim(0, 3e-4)
plt.xlim(0, 360)
plt.plot(x, form(x, *param), 'b-')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.axes().xaxis.set_major_locator(ticker.MultipleLocator(45))
plt.show()

(Your x values are from 0 to 360, I don't know why you've set the plot limits to 370. Also, I spaced the ticks in 45 degrees interval.)


Update: The fit results in a negative amplitude I_0 and an offset of about 3e-4, close to the maximum y values. You can guide the fit to a positive amplitude and offset close to zero ("flip it around") by providing a 90 degree initial phase offset:

>>> param, covariance = optimize.curve_fit(form, x, y, [3e-4, 90, 0])
>>> print 'I_0: {0:e} / theta_0: {1} degrees / offset: {2:e}'.format(*param)
I_0: 2.827996e-04 / theta_0: 80.8288157578 degrees / offset: 9.853833e-06

Here's the complete code.

The comma in your formula is creating a two object tuple, it does not specify "thousands", as such, you should remove this giving you:

I_O = 0.00757447606715

The aim here is to provide a function that can be adapted to fit your data. Your original function only provided one parameter, which was not enough to enable curve_fit() to get a good fit.

In order to get a better fit, you need to create more variables for your func() to enable the curve fitter more flexibility. In this case for the cos wave, it provides I_O for the amplitude, theta0 for the phase and yoffset.

So the code would be:

import matplotlib.pyplot as plt
from math import pi
from scipy import optimize
import numpy as np

x1 = [ 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0, 
  60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 105.0, 110.0, 115.0, 
  120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 155.0, 160.0, 165.0, 
  170.0, 175.0, 180.0, 185.0, 190.0, 195.0, 200.0, 205.0, 210.0, 215.0, 
  220.0, 225.0, 230.0, 235.0, 240.0, 245.0, 250.0, 255.0, 260.0, 265.0, 
  270.0, 275.0, 280.0, 285.0, 290.0, 295.0, 300.0, 305.0, 310.0, 315.0, 
  320.0, 325.0, 330.0, 335.0, 340.0, 345.0, 350.0, 355.0, 360.0]

x2  = [  1.69000000e-05, 2.80000000e-05, 4.14000000e-05, 5.89000000e-05,
 7.97000000e-05, 9.79000000e-05, 1.23000000e-04, 1.47500000e-04,
 1.69800000e-04, 1.94000000e-04, 2.17400000e-04, 2.40200000e-04,
 2.55400000e-04, 2.70500000e-04, 2.81900000e-04, 2.87600000e-04,
 2.91500000e-04, 2.90300000e-04, 2.83500000e-04, 2.76200000e-04,
 2.62100000e-04, 2.41800000e-04, 2.24200000e-04, 1.99500000e-04,
 1.74100000e-04, 1.49300000e-04, 1.35600000e-04, 1.11500000e-04,
 9.00000000e-05, 6.87000000e-05, 4.98000000e-05, 3.19000000e-05,
 2.07000000e-05, 1.31000000e-05, 9.90000000e-06, 1.03000000e-05,
 1.49000000e-05, 2.34000000e-05, 3.65000000e-05, 5.58000000e-05,
 7.56000000e-05, 9.65000000e-05, 1.19400000e-04, 1.46900000e-04,
 1.73000000e-04, 1.99200000e-04, 2.24600000e-04, 2.38700000e-04,
 2.60700000e-04, 2.74800000e-04, 2.84000000e-04, 2.91200000e-04,
 2.93400000e-04, 2.90300000e-04, 2.86400000e-04, 2.77900000e-04,
 2.63600000e-04, 2.45900000e-04, 2.25500000e-04, 2.03900000e-04,
 1.79100000e-04, 1.51800000e-04, 1.32400000e-04, 1.07000000e-04,
 8.39000000e-05, 6.20000000e-05, 4.41000000e-05, 3.01000000e-05,
 1.93000000e-05, 1.24000000e-05, 1.00000000e-05, 1.13000000e-05,
 1.77000000e-05]

x1 = np.radians(np.array(x1))
x2 = np.array(x2)

def form(theta, I_0, theta0, offset):
    return I_0 * np.cos(theta - theta0) ** 2 + offset

param, covariance = optimize.curve_fit(form, x1, x2)
plt.scatter(x1, x2, label='data')
plt.ylim(x2.min(), x2.max())
plt.plot(x1, form(x1, *param), 'b-')
plt.show()

Giving you an output of:

The maths libraries work in radians, so your data would need to be converted to radians at some point (where 2pi == 360 degrees). You can either convert your data to radians, or carry out the conversion within your function.

Thanks also to mkrieger1 for the extra parameters.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!