'RDD' object has no attribute '_jdf' pyspark RDD

喜欢而已 提交于 2019-12-06 09:14:24

You shouldn't be using rdd with CountVectorizer. Instead you should try to form the array of words in the dataframe itself as

train_data = spark.read.text("20ng-train-all-terms.txt")

from pyspark.sql import functions as F
td= train_data.select(F.split("value", " ").alias("words")).select(F.col("words")[0].alias("label"), F.col("words"))

from pyspark.ml.feature import CountVectorizer
vectorizer = CountVectorizer(inputCol="words", outputCol="bag_of_words")
vectorizer_transformer = vectorizer.fit(td)

And then it should work so that you can call transform function as

vectorizer_transformer.transform(td).show(truncate=False)

Now, if you want to stick to the old style of converting to the rdd style then you have to modify certain lines of code. Following is the modified complete code (working) of yours

from pyspark import Row
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from pyspark import SparkConf
sc = SparkContext
spark = SparkSession.builder.appName("ML").getOrCreate()

train_data = spark.read.text("20ng-train-all-terms.txt")
td= train_data.rdd #transformer df to rdd
tr_data= td.map(lambda line: line[0].split(" ")).map(lambda words: Row(label=words[0], words=words[1:])).toDF()
from pyspark.ml.feature import CountVectorizer

vectorizer = CountVectorizer(inputCol="words", outputCol="bag_of_words")
vectorizer_transformer = vectorizer.fit(tr_data)

But I would suggest you to stick with dataframe way.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!