How to Use PCA to Reduce Dimension

倖福魔咒の 提交于 2019-12-06 08:23:03

you will have to collect feature vectors from a lot of images, make a single pca from that (offline), and later use the mean & eigenvectors for the projection.

// let's say, you have collected 10 feature vectors a 30 elements.
// flatten them to a single row (reshape(1,1)) and push_back into a big Data Mat

Mat D(10,30,CV_32F); // 10 rows(features) a 30 elements
randu(D,0,10);       // only for the simulation here
cerr << D.size() << endl;
// [30 x 10]


// now make a pca, that will only retain 6 eigenvectors
// so the later projections are shortened to 6 elements:

PCA p(D,Mat(),CV_PCA_DATA_AS_ROW,6);
cerr << p.eigenvectors.size() << endl;
// [30 x 6]

// now, that the training step is done, we can use it to
// shorten feature vectors:
// either keep the PCA around for projecting:

// a random test vector, 
Mat v(1,30,CV_32F);
randu(v,0,30);

// pca projection:
Mat vp = p.project(v);

cerr << vp.size() << endl;
cerr << vp << endl;
// [6 x 1]
// [-4.7032223, 0.67155731, 15.192059, -8.1542597, -4.5874329, -3.7452228]


// or, maybe, save the pca.mean and pca.eigenvectors only, and do your own projection:

Mat vp2 = (v - mean) * eigenvectors.t();

cerr << vp2.size() << endl;
cerr << vp2 << endl;
//[6 x 1]
//[-4.7032223, 0.67155731, 15.192059, -8.1542597, -4.5874329, -3.7452228]

well, oh, here's the downside: calculating a pca from 4.4k train images a 75k feature elements will take like a good day ;)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!