下列命题为真命题的个数是\((\qquad)\)
① \({\ln}3<\sqrt{3}{\ln}2;\) ② \({\ln}\pi<\sqrt{\dfrac{\pi}{\mathrm{e}}};\) ③ \(2^{\sqrt{15}}<15;\) ④ \(3\mathrm{e}{\ln}2<4\sqrt{2}\).\
\(\mathrm{A}. 1\) \(\qquad \mathrm{B}.2\) \(\qquad \mathrm{C}.3\) \(\qquad \mathrm{D}.4\)
解析:
构造函数\[f(x)=\dfrac{{\ln}x}{x},x>0.\]易知\(f(x)\)在\(\left(0,\mathrm{e}\right)\)单调递增,在\(\left[\mathrm{e},+\infty\right)\)单调递减.
对于 ①, 由于\(\sqrt{3}<2<\mathrm{e}\),所以\[
f\left(\sqrt{3}\right)<f\left(2\right)\Leftrightarrow {\ln}3<\sqrt{3}{\ln}2. \]
对于 ②,由于\(\sqrt{\mathrm{e}}<\sqrt{\pi}<\mathrm{e}\),所以
\[f\left(\sqrt{\mathrm{e}}\right)<f\left(\sqrt{\pi}\right)\Leftrightarrow \sqrt{\dfrac{\pi}{\mathrm{e}}}<{\ln}\pi.\]
对于 ③,由于\(\mathrm{e}<\sqrt{15}<4\),所以\[
\begin{split}
&f\left(4\right)<f\left(\sqrt{15}\right)\\
\Longleftrightarrow & \dfrac{{\ln}4}{4}<\dfrac{{\ln}\sqrt{15}}{\sqrt{15}}\\
\Longleftrightarrow & \sqrt{15}{\ln}2<{\ln}15\\
\Longleftrightarrow &2^{\sqrt{15}}<15.
\end{split}
\]
对于 ④,由于\(3\mathrm{e}{\ln}2=2\mathrm{e}{\ln}\left(2\sqrt{2}\right)\),所以\[
f\left(2\sqrt{2}\right)<f\left(\mathrm{e}\right)\Leftrightarrow 3\mathrm{e}{\ln}2<4\sqrt{2}.\]
综上,①③④ 为真命题,②为假命题.因此正确选项为\(\rm C\).
来源:https://www.cnblogs.com/Math521/p/11959661.html