问题
I decided to implement a very simple program recursively, to see how well Java handles recursion*, and came up a bit short. This is what I ended up writing:
public class largestInIntArray {
public static void main(String[] args)
{
// These three lines just set up an array of ints:
int[] ints = new int[100];
java.util.Random r = new java.util.Random();
for(int i = 0; i < 100; i++) ints[i] = r.nextInt();
System.out.print("Normal:"+normal(ints,-1)+" Recursive:"+recursive(ints,-1));
}
private static int normal(int[] input, int largest) {
for(int i : input)
if(i > largest) largest = i;
return largest;
}
private static int recursive(int[] ints, int largest) {
if(ints.length == 1)
return ints[0] > largest ? ints[0] : largest;
int[] newints = new int[ints.length - 1];
System.arraycopy(ints, 1, newints, 0, ints.length - 1);
return recursive(newints, ints[0] > largest ? ints[0] : largest);
}
}
And that works fine, but as it's a bit ugly I wondered if there was a better way. If anyone has any thoughts/alternatives/syntactic sugar to share, that'd be much appreciated!
P.s. If you say "use Lisp" you win nothing (but respect). I want to know if this can be made to look nice in Java.
*and how well I handle recursion
回答1:
2 improvements:
- no copy of the array (just using the offset)
no need to give the current max
private static int recursive(int[] ints, int offset) { if (ints.length - 1 == offset) { return ints[offset]; } else { return Math.max(ints[offset], recursive(ints, offset + 1)); } }
Start the recursion with recursive(ints, 0)
.
回答2:
Here's how I might make the recursive method look nicer:
private static int recursive(int[] ints, int largest, int start) {
if (start == ints.length) {
return largest;
}
return recursive(ints, Math.max(ints[start], largest), start + 1);
}
This avoids the expensive array copy, and works for an empty input array. You may implement an additional overloaded method with only two parameters for the same signature as the iterative function:
private static int recursive(int[] ints, int largest) {
return recursive(ints, largest, 0);
}
回答3:
You could pass the current index as a parameter rather than copying almost the entire array each time or you could use a divide and conquer approach.
回答4:
public static int max(int[] numbers) {
int size = numbers.length;
return max(numbers, size-1, numbers[size-1]);
}
public static int max(int[] numbers, int index, int largest) {
largest = Math.max(largest, numbers[index]);
return index > 0 ? max(numbers, index-1, largest) : largest;
}
回答5:
... to see how well Java handles recursion
The simple answer is that Java doesn't handle recursion well. Specifically, Sun java compilers and Hotspot JVMs do not implement tail call recursion optimization, so recursion intensive algorithms can easily consume a lot of stack space.
However, I have seen articles that say that IBM's JVMs do support this optimization. And I saw an email from some non-Sun guy who said he was adding it as an experimental Hotspot extension as a thesis project.
回答6:
Here's a slight variation showing how Linked Lists are often a little nicer for recursion, where "nicer" means "less parameters in method signature"
private static int recursive(LinkedList<Integer> list) {
if (list.size() == 1){
return list.removeFirst();
}
return Math.max(list.removeFirst(),recursive(list));
}
回答7:
Your recursive code uses System.arrayCopy
, but your iterative code doesn't do this, so your microbenchmark isn't going to be accurate. As others have mentioned, you can clean up that code by using Math.min
and using an array index instead of the queue-like approach you had.
回答8:
public class Maximum
{
/**
* Just adapted the iterative approach of finding maximum and formed a recursive function
*/
public static int max(int[] arr,int n,int m)
{
if(m < arr[n])
{
m = arr[n];
return max(arr,n - 1,m);
}
return m;
}
public static void main(String[] args)
{
int[] arr = {1,2,3,4,5,10,203,2,244,245,1000,55000,2223};
int max1 = max(arr,arr.length-1,arr[0]);
System.out.println("Max: "+ max1);
}
}
回答9:
I actually have a pre made class that I setup for finding the largest integer of any set of values. You can put this class into your project and simply use it in any class like so:
System.out.println(figures.getLargest(8,6,12,9,120));
This would return the value "120" and place it in the output. Here is the methods source code if you are interested in using it:
public class figures {
public static int getLargest(int...f) {
int[] score = new int[f.length];
int largest=0;
for(int x=0;x<f.length;x++) {
for(int z=0;z<f.length;z++) {
if(f[x]>=f[z]) {
score[x]++;
}else if(f[x]<f[z]) {
}else {
continue;
}
if(z>=f.length) {
z=0;
break;
}
}
}
for(int fg=0;fg<f.length;fg++) {
if(score[fg]==f.length) {
largest = f[fg];
}
}
return largest;
}
}
回答10:
The following is a sample code given by my Java instructor, Professor Penn Wu, in one of his lectures. Hope it helps.
import java.util.Random;
public class Recursion
{
static int s = 0;
public static Double max(Double[] d, int n, Double max)
{
if (n==0) { return max;}
else
{
if (d[n] > max)
{
max = d[n];
}
return max(d, n-1, max);
}
}
public static void main(String[] args)
{
Random rn = new Random();
Double[] d = new Double[15];
for (int i=0; i {
d[i] = rn.nextDouble();
System.out.println(d[i]);
}
System.out.print("\nMax: " + max(d, d.length-1, d[0]));
}
}
回答11:
Here is my alternative
public class recursion
{
public static int max( int[] n, int index )
{
if(index == n.length-1) // If it's simple, solve it immediately:
return n[index]; // when there's only one number, return it
if(max(n, index+1) > n [index]) // is one number bigger than n?
return max(n, index+1); // return the rest, which contains that bigger number
return n[index]; // if not, return n which must be the biggest number then
}
public static void main(String[] args)
{
int[] n = {100, 3, 5, 1, 2, 10, 2, 15, -1, 20, -1203}; // just some numbers for testing
System.out.println(max(n,0));
}
}
来源:https://stackoverflow.com/questions/1984734/finding-the-largest-positive-int-in-an-array-by-recursion