Understanding Thrust (CUDA) memory usage

主宰稳场 提交于 2019-12-06 02:30:44
talonmies

Thrust doesn't do anything magic with memory management, the default allocator is just cudaMalloc, and what you are seeing is the driver memory manager page size selection algorithm at work. This isn't documented, and there is no indication that behaviour is consistent between platform and hardware versions.

That said, if I expand your code into something a bit more useful:

#include <iostream>
#include <vector>
#include <thrust/system_error.h>
#include <thrust/device_vector.h>
#include <thrust/execution_policy.h>

void report_mem(size_t allocd, bool first=false)
{
    size_t freeMem, totalMem;
    cudaMemGetInfo(&freeMem, &totalMem);
    if (first) 
        std::cout << "Allocated | Total Memory | Free Memory "<< std::endl;
    std::cout << allocd << ", " << totalMem << ", " << freeMem << std::endl;
}

int main() 
{
    cudaSetDevice(0);

    report_mem(0, true);
    std::vector<size_t> asizes;
    const int nallocs = 10;
    for(int i=0; i < nallocs; i++) asizes.push_back(1<<14);
    for(int i=0; i < nallocs; i++) asizes.push_back(1<<16);
    for(int i=0; i < nallocs; i++) asizes.push_back(1<<18);
    for(int i=0; i < nallocs; i++) asizes.push_back(1<<20);
    for(int i=0; i < nallocs; i++) asizes.push_back(1<<22);

    typedef thrust::device_vector<float> dvecf_t;
    std::vector<dvecf_t*> allocs;
    auto it = asizes.begin();
    for(; it != asizes.end(); ++it) {
        dvecf_t* v = new dvecf_t(*it);
        allocs.push_back(v);
    report_mem(v->capacity() * sizeof(float));
    }
    return 0;
}

and run it on a compute 2.1 device on Windows 64 bit, I get this:

Allocated | Total Memory | Free Memory 
0, 1073741824, 1007849472
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
65536, 1073741824, 1006800896
262144, 1073741824, 1005752320
262144, 1073741824, 1005752320
262144, 1073741824, 1005752320
262144, 1073741824, 1005752320
262144, 1073741824, 1004703744
262144, 1073741824, 1004703744
262144, 1073741824, 1004703744
262144, 1073741824, 1004703744
262144, 1073741824, 1003655168
262144, 1073741824, 1003655168
1048576, 1073741824, 1002606592
1048576, 1073741824, 1001558016
1048576, 1073741824, 1000509440
1048576, 1073741824, 999460864
1048576, 1073741824, 998412288
1048576, 1073741824, 997363712
1048576, 1073741824, 996315136
1048576, 1073741824, 995266560
1048576, 1073741824, 994217984
1048576, 1073741824, 993169408
4194304, 1073741824, 988975104
4194304, 1073741824, 984780800
4194304, 1073741824, 980586496
4194304, 1073741824, 976392192
4194304, 1073741824, 972197888
4194304, 1073741824, 968003584
4194304, 1073741824, 963809280
4194304, 1073741824, 959614976
4194304, 1073741824, 955420672
4194304, 1073741824, 951226368
16777216, 1073741824, 934449152
16777216, 1073741824, 917671936
16777216, 1073741824, 900894720
16777216, 1073741824, 884117504
16777216, 1073741824, 867340288
16777216, 1073741824, 850563072
16777216, 1073741824, 833785856
16777216, 1073741824, 817008640
16777216, 1073741824, 800231424

which I interpret as indicating that the allocation granularity is 1MiB (1048576 or 2^20 bytes) on the platform I tested this on. Your platform might be different.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!