string comparison in python but not Levenshtein distance (I think)

做~自己de王妃 提交于 2019-12-06 02:26:21

Well, it's definitely not Levenshtein:

>>> from nltk import metrics
>>> metrics.distance.edit_distance('abcde','abcfg')
2
>>> metrics.distance.edit_distance('abcde','abfcg')
3
>>> help(metrics.distance.edit_distance)
Help on function edit_distance in module nltk.metrics.distance:

edit_distance(s1, s2)
    Calculate the Levenshtein edit-distance between two strings.
    The edit distance is the number of characters that need to be
    substituted, inserted, or deleted, to transform s1 into s2.  For
    example, transforming "rain" to "shine" requires three steps,
    consisting of two substitutions and one insertion:
    "rain" -> "sain" -> "shin" -> "shine".  These operations could have
    been done in other orders, but at least three steps are needed.

    @param s1, s2: The strings to be analysed
    @type s1: C{string}
    @type s2: C{string}
    @rtype C{int}

Just after the text block you cite, there is a reference to a previous paper from the same authors : Secondary Structure of Proteins and Three-dimensional Pattern Recognition. I think it is worth to look into it if there is no explanantion of the distance (I'm not at work so I haven't the access to the full document).

Otherwise, you can also try to contact directly the authors : Alain Figureau seems to be an old-school French researcher with no contact whatsoever (no webpage, no e-mail, no "social networking",..) so I advise to try contacting M.A. Soto , whose e-mail is given at the end of the paper. I think they will give you the answer you're looking for : the experiment's procedure has to be crystal clear in order to be repeatable, it's part of the scientific method in research.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!