问题
I have a dataframe that looks like this:
>>> df[['data','category']]
Out[47]:
data category
0 4610 2
15 4610 2
22 5307 7
23 5307 7
25 5307 7
... ... ...
Both data and category are numeric so I'm able to do this:
>>> df[['data','category']].mean()
Out[48]:
data 5894.677985
category 13.805886
dtype: float64
And i'm trying to get the mean for each category. It looks straight forward but when I do this:
>>> df[['data','category']].groupby('category').mean()
or
>>> df.groupby('category')['data'].mean()
It returns an error like this:
DataError: No numeric types to aggregate
There's no error if I replace both functions above with .count()
.
What do I do wrongly? What's the correct way to get the mean of each category?
回答1:
Can you do a df.dtypes ? In the example below type is Int as it works fine.
import pandas as pd
##group by 1 columns
df = pd.DataFrame({' data': [4610, 4611, 4612, 4613], 'Category': [2, 2, 7, 7]})
print df.groupby('Category'). mean()
##Mutiple columns to group by
df1 = pd.DataFrame({' data': [4610, 4611, 4612, 4613], 'Category': [2, 2, 7, 7], 'Category2' : ['A','B','A','B']})
key=['Category','Category2']
print df1.groupby( key).mean()
Category Category2
2 A 4610
B 4611
7 A 4612
B 4613
回答2:
As mentioned, you don't give an example of the testTime and passing_site data, but I'm guessing that they're floating rate numbers. As I'm sure you can imagine, you can't group on floating numbers. Rather, you would need to group on integers or categories of some type.
try something like:
df.groupby(['data', 'category'])['passing_site', 'testTime'].mean()
You're grouping on 'data' and 'category', and then calculating the mean for the numerical columns 'passing_site' and 'testTime'.
来源:https://stackoverflow.com/questions/29314424/pandas-using-groupby-to-get-mean-for-each-data-category