Weight samples if incorrect guessed in binary cross entropy

混江龙づ霸主 提交于 2019-12-05 22:22:40

Yes, it's possible. Below you may find an example of how to add additional weight on true positives , false positives , true negatives, etc:

def reweight(y_true, y_pred, tp_weight=0.2, tn_weight=0.2, fp_weight=1.2, fn_weight=1.2):
    # Get predictions
    y_pred_classes = K.greater_equal(y_pred, 0.5)
    y_pred_classes_float = K.cast(y_pred_classes, K.floatx())

    # Get misclassified examples
    wrongly_classified = K.not_equal(y_true, y_pred_classes_float)
    wrongly_classified_float = K.cast(wrongly_classified, K.floatx())

    # Get correctly classified examples
    correctly_classified = K.equal(y_true, y_pred_classes_float)
    correctly_classified_float = K.cast(wrongly_classified, K.floatx())

    # Get tp, fp, tn, fn
    tp = correctly_classified_float * y_true
    tn = correctly_classified_float * (1 - y_true)
    fp = wrongly_classified_float * y_true
    fn = wrongly_classified_float * (1 - y_true)

    # Get weights
    weight_tensor = tp_weight * tp + fp_weight * fp + tn_weight * tn + fn_weight * fn

    loss = K.binary_crossentropy(y_true, y_pred)
    weighted_loss = loss * weight_tensor
    return weighted_loss
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!