Caffe classification labels in HDF5

让人想犯罪 __ 提交于 2019-12-05 21:29:56
Shai

Since you moved from regression to classification, you need to output not a scalar to compare with "label" but rather a probability vector of length num-labels to compare with the discrete class "label". You need to change num_output parameter of the layer before "SoftmaxWithLoss" from 1 to num-labels.

I believe currently you are accessing un-initialized memory and I would expect caffe to crash sooner or later in this case.

Update:
You made two changes: num_output 1-->6, and you also changed your input label from a scalar to vector.
The first change was the only one you needed for using "SoftmaxWithLossLayer".
Do not change label from a scalar to a "hot-vector".

Why?
Because "SoftmaxWithLoss" basically looks at the 6-vector prediction you output, interpret the ground-truth label as index and looks at -log(p[label]): the closer p[label] is to 1 (i.e., you predicted high probability for the expected class) the lower the loss. Making a prediction p[label] close to zero (i.e., you incorrectly predicted low probability for the expected class) then the loss grows fast.


Using a "hot-vector" as ground-truth input label, may give rise to multi-category classification (does not seems like the task you are trying to solve here). You may find this SO thread relevant to that particular case.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!