I'm reading in csvs into Spark and I'm setting the schema to all DecimalType(10,0) columns. When I query the data, I get the following error:
NumberFormatException: Infinite or NaN
If I have NaN/null/infinite values in my dataframe, I would like to set them to 0. How do I do this? This is how I'm attempting to load the data:
var cases = spark.read.option("header",false).
option("nanValue","0").
option("nullValue","0").
option("positiveInf","0").
option("negativeInf","0").
schema(schema).
csv(...
Any help would be greatly appreciated.
If you have NaN
values in multiple columns, you can use na.fill()
to fill with the default value
example:
val spark =
SparkSession.builder().master("local").appName("test").getOrCreate()
import spark.implicits._
val data = spark.sparkContext.parallelize(
Seq((0f,0f, "2016-01-1"),
(1f,1f, "2016-02-2"),
(2f,2f, "2016-03-21"),
(Float.NaN,Float.NaN, "2016-04-25"),
(4f,4f, "2016-05-21"),
(Float.NaN,Float.NaN, "2016-06-1"),
(6f,6f, "2016-03-21"))
).toDF("id1", "id", "date")
data.na.fill(0).show
+---+---+----------+
|id1| id| date|
+---+---+----------+
|0.0|0.0| 2016-01-1|
|1.0|1.0| 2016-02-2|
|2.0|2.0| null|
|0.0|0.0|2016-04-25|
|4.0|4.0|2016-05-21|
|0.0|0.0| 2016-06-1|
|6.0|6.0|2016-03-21|
+---+---+----------+
you can set a single dataframe column to have 0 in places of NaN using the below expression. In this example any NaN values in column col1
will be replaced with 0.
val df = (1 to 10).toDF("col1").withColumn("col1",when(when($"col1".isNull, 0).otherwise($"col1").isNaN, 0).otherwise($"col1"))
My environment (using Spark 2.3.1 with Scala 2.11) doesn't replicate @ShankarKoirala answer - the .na.fill()…
doesn't capture the infinity
and NaN
, because those are not empty values. However, walues could be tested using .isin()
function:
val x1 = Seq((1.0, 1, "a"),(1.0, 1, "a"), (2.0, 2, "b")
, (Float.NaN, 1, "a"), (Float.PositiveInfinity, 2, "a")
, (Float.NegativeInfinity, 2, "a"))
.toDF("Value", "Id", "Name")
x1
.withColumn("IsItNull", $"Value".isNull)
.withColumn("IsItBad", $"Value".isin(Double.NaN, Double.PositiveInfinity, Double.NegativeInfinity))
.show()
this will produce following results:
+---------+---+----+--------+-------+
| Value| Id|Name|IsItNull|IsItBad|
+---------+---+----+--------+-------+
| 1.0| 1| a| false| false|
| 1.0| 1| a| false| false|
| 2.0| 2| b| false| false|
| NaN| 1| a| false| true|
| Infinity| 2| a| false| true|
|-Infinity| 2| a| false| true|
+---------+---+----+--------+-------+
If a replacement is needed, just use original column name in the withColumn()
function and apply the .isin()
as argument of when
function.
来源:https://stackoverflow.com/questions/44296484/how-to-replace-null-nan-or-infinite-values-to-default-value-in-spark-scala