测试

落花浮王杯 提交于 2019-11-26 21:58:00

\[\begin{aligned} &\int_\Omega u_{tt}(h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x\\ =&\frac{{\mathop{}\!\mathrm{d}}}{{\mathop{}\!\mathrm{d}} t}\int_\Omega u_t(h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x-\int_\Omega u_t (h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x\\ =&\frac{{\mathop{}\!\mathrm{d}}}{{\mathop{}\!\mathrm{d}} t}\int_\Omega u_t(h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x-\frac12 \int_\Omega h(x)\cdot \nabla |u_t|^2 {\mathop{}\!\mathrm{d}} x. \end{aligned}\]
由于\(\int_a^b f(x) {\mathop{}\!\mathrm{d}} x=F(b)-F(a)\), 于是
\[\begin{aligned} &\int_\Omega h(x)\cdot \nabla |u_t|^2{\mathop{}\!\mathrm{d}} x=\sum_i^N\int_\Omega h_i\frac{\partial}{\partial x_i}|u_t|^2 {\mathop{}\!\mathrm{d}} x\\ =&\sum_i^N\int_{\partial\Omega}h_i |u_t|^2 \nu_i{\mathop{}\!\mathrm{d}} S-\sum_i^N\int_\Omega |u_t|^2 \frac{\partial h_i}{\partial x_i}{\mathop{}\!\mathrm{d}} x\\ =&0-\int_\Omega (\nabla \cdot h)|u_t|^2 {\mathop{}\!\mathrm{d}} x, \end{aligned}\]
所以最终有
\[\begin{aligned} &\int_\Omega u_{tt}(h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x\\ =&\frac{{\mathop{}\!\mathrm{d}}}{{\mathop{}\!\mathrm{d}} t}\int_\Omega u_t(h(x)\cdot \nabla u){\mathop{}\!\mathrm{d}} x+\frac12 \int_\Omega (\nabla \cdot h)|u_t|^2 {\mathop{}\!\mathrm{d}} x. \end{aligned}\]

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!