Calculating the intersection between two angle intervals

守給你的承諾、 提交于 2019-12-05 18:22:46

Let's end angles are a1, a2 and b1, b2

da = (a2 - a1)/ 2  
db = (b2 - b1)/ 2  
ma = (a2 + a1)/ 2  
mb = (b2 + b1)/ 2  
cda = Cos(da)
cdb = Cos(db)

Then angle intervals intersect if

Cos(ma - b1) >= cda  or 
Cos(ma - b2) >= cda  or 
Cos(mb - a1) >= cdb  or 
Cos(mb - a2) >= cdb

(First condition - angle between bisector of sector A and vector OB1 is less than half-angle da)

I recently ran into this issue in a gaming project. My solution is to first normalise the angles to be between [0 and 360) degrees, and then check if any segments crossed an evil branch. If they do, just split them into two sections at the evil branch and then sum up their independent overlapping angles. I used recursion to simplify the branching scenarios.

Here is my code written in C#, specifically for Unity 3D:

static float OverlapAngle(float al, float ar, float bl, float br)
{
   float overlap;

   al = al % 360;
   ar = ar % 360;
   bl = bl % 360;
   br = br % 360;

   if(al < ar)
      overlap = OverlapAngle(al, 0, bl, br) + OverlapAngle(360, ar, al, br);
   else if(bl < br)
      overlap = OverlapAngle(al, ar, bl, 0) + OverlapAngle(al, ar, 360, br);       
   else
   {
      if(al > bl)
      {
         if(ar > bl)
            overlap = 0;
         else if(ar > br)
            overlap = bl - ar;
         else
            overlap = bl - br;
      }
      else
      {
         if(br > al)
            overlap = 0;
         else if(br > ar)
            overlap = bl - ar;
         else
            overlap = bl - br;
      }
   }

   return overlap;
}

You can easily check if two segments overlap if their overlap angle is close enough to 0.

bool areOverlapping = OverlapAngle(al, ar, bl, br) < 1e-6;

Assuming you normalized your angles to the range [0..1], you can use this implementation of overlapBetweenCircularNormalizedRanges:

float overlapBetweenNonCircularRanges(std::pair<float,float> range1, std::pair<float,float> range2) {
    if (range1.second < range2.second)
        std::swap(range1, range2);

    if (range2.second <= range1.first) //No overlap
        return 0.0f;
    else if (range2.first <= range1.first) //Partial overlap
        return range2.second - range1.first;
    else //Fully contained
        return range2.second - range2.first;
};

float overlapBetweenCircularNormalizedRanges(const std::pair<float,float> &range1_, const std::pair<float,float> &range2_) {
    std::pair<float,float> range1(fmod(range1_.first, 1.0), fmod(range1_.second, 1.0)); //0..1
    std::pair<float,float> range2(fmod(range2_.first, 1.0) - 1.0, fmod(range2_.second, 1.0) - 1.0); //-1..0

    // Handle cases where one of the ranges is the full 0..1 range
    const float EPS = 1e-4;
    if (range1_.second - range1_.first > 1.0 - EPS)
        range1.second += 1.0;
    if (range2_.second - range2_.first > 1.0 - EPS)
        range2.second += 1.0;

    // Ordered ranges linearly (non-circular)
    if (range1.second < range1.first)
        range1.second += 1.0; //0..2
    if (range2.second < range2.first)
        range2.second += 1.0; //-1..1

    // Move range2 by 1.0 to cover the entire possible range1
    float overlap = 0.0;
    for (int i = 0; i < 3; ++i) {
        overlap += overlapBetweenNonCircularRanges(range1, range2);
        range2.first += 1.0;
        range2.second += 1.0;
    }

    return overlap;
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!