Find common third on large data set

北城以北 提交于 2019-12-05 17:12:43

Here's one using igraph package. The basic idea is to create a graph and then extract two adjacent nodes for each node.

library(igraph)
X1 = split(df$person, df$group)
X2 = X1[lengths(X1) >= 2]
dat = data.frame(do.call(rbind, unlist(lapply(X2, function(x)
            combn(x, 2, sort, FALSE)), recursive = FALSE)))
g = graph.data.frame(dat, directed = FALSE)
mydf = data.frame(as.matrix(get.adjacency(g)))
mydf = mydf[colSums(mydf) > 1]
ANS = sapply(mydf, function(x) t(combn(row.names(mydf)[which(x == 1)], 2)))
do.call(rbind, lapply(names(ANS), function(nm) data.frame(ANS[[nm]], nm)))
#     X1   X2   nm
#1   Sam  Tom Anna
#2  Anna  Tom  Sam
#3 Jerry Anna  Tom
#4 Jerry  Sam  Tom
#5  Anna  Sam  Tom

OR

mynames = unique(do.call(c, X2))
do.call(rbind,
        lapply(mynames, function(x){
            L = V(g)$name[unlist(adjacent_vertices(graph = g, v = x))]
            if(length(L) >= 2){
                setNames(data.frame(t(combn(L, 2)), x), c("P1", "P2", "P3"))
            }else{
                setNames(data.frame(NA, NA, x), c("P1", "P2", "P3"))
            }
        }))
#     P1   P2    P3
#1 Jerry Anna   Tom
#2 Jerry  Sam   Tom
#3  Anna  Sam   Tom
#4  <NA> <NA> Jerry
#5   Sam  Tom  Anna
#6  Anna  Tom   Sam
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!