Can I change the nullability of a column in my Spark dataframe?

烈酒焚心 提交于 2019-12-05 14:28:49

Seems you missed the StructType(newSchema).

l = [('Alice', 1)]
df = sqlContext.createDataFrame(l, ['name', 'age'])
df = df.withColumn('foo', F.when(df['name'].isNull(),False).otherwise(True))
df.schema.fields
newSchema = [StructField('name',StringType(),True), StructField('age',LongType(),True),StructField('foo',BooleanType(),False)]
df2 = sqlContext.createDataFrame(df.rdd, StructType(newSchema))
df2.show()

I know this question is already answered, but I was looking for a more generic solution when I came up with this:

def set_df_columns_nullable(spark, df, column_list, nullable=True):
    for struct_field in df.schema:
        if struct_field.name in column_list:
            struct_field.nullable = nullable
    df_mod = spark.createDataFrame(df.rdd, df.schema)
    return df_mod

You can then call it like this:

set_df_columns_nullable(spark,df,['name','age'])
df1 = df.rdd.toDF()
df1.printSchema()

Output:

root
 |-- name: string (nullable = true)
 |-- age: long (nullable = true)
 |-- foo: boolean (nullable = true)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!