问题
So I have a dataset that I would like to remove stop words from using
stopwords.words(\'english\')
I\'m struggling how to use this within my code to just simply take out these words. I have a list of the words from this dataset already, the part i\'m struggling with is comparing to this list and removing the stop words. Any help is appreciated.
回答1:
from nltk.corpus import stopwords
# ...
filtered_words = [word for word in word_list if word not in stopwords.words('english')]
回答2:
You could also do a set diff, for example:
list(set(nltk.regexp_tokenize(sentence, pattern, gaps=True)) - set(nltk.corpus.stopwords.words('english')))
回答3:
I suppose you have a list of words (word_list) from which you want to remove stopwords. You could do something like this:
filtered_word_list = word_list[:] #make a copy of the word_list
for word in word_list: # iterate over word_list
if word in stopwords.words('english'):
filtered_word_list.remove(word) # remove word from filtered_word_list if it is a stopword
回答4:
To exclude all type of stop-words including nltk stop-words, you could do something like this:
from stop_words import get_stop_words
from nltk.corpus import stopwords
stop_words = list(get_stop_words('en')) #About 900 stopwords
nltk_words = list(stopwords.words('english')) #About 150 stopwords
stop_words.extend(nltk_words)
output = [w for w in word_list if not w in stop_words]
回答5:
Use textcleaner library to remove stopwords from your data.
Follow this link:https://yugantm.github.io/textcleaner/documentation.html#remove_stpwrds
Follow these steps to do so with this library.
pip install textcleaner
After installing:
import textcleaner as tc
data = tc.document(<file_name>)
#you can also pass list of sentences to the document class constructor.
data.remove_stpwrds() #inplace is set to False by default
Use above code to remove the stop-words.
回答6:
There's a very simple light-weight python package stop-words
just for this sake.
Fist install the package using:
pip install stop-words
Then you can remove your words in one line using list comprehension:
from stop_words import get_stop_words
filtered_words = [word for word in dataset if word not in get_stop_words('english')]
This package is very light-weight to download (unlike nltk), works for both Python 2
and Python 3
,and it has stop words for many other languages like:
Arabic
Bulgarian
Catalan
Czech
Danish
Dutch
English
Finnish
French
German
Hungarian
Indonesian
Italian
Norwegian
Polish
Portuguese
Romanian
Russian
Spanish
Swedish
Turkish
Ukrainian
回答7:
you can use this function, you should notice that you need to lower all the words
from nltk.corpus import stopwords
def remove_stopwords(word_list):
processed_word_list = []
for word in word_list:
word = word.lower() # in case they arenet all lower cased
if word not in stopwords.words("english"):
processed_word_list.append(word)
return processed_word_list
回答8:
using filter:
from nltk.corpus import stopwords
# ...
filtered_words = list(filter(lambda word: word not in stopwords.words('english'), word_list))
回答9:
import sys
print ("enter the string from which you want to remove list of stop words")
userstring = input().split(" ")
list =["a","an","the","in"]
another_list = []
for x in userstring:
if x not in list: # comparing from the list and removing it
another_list.append(x) # it is also possible to use .remove
for x in another_list:
print(x,end=' ')
# 2) if you want to use .remove more preferred code
import sys
print ("enter the string from which you want to remove list of stop words")
userstring = input().split(" ")
list =["a","an","the","in"]
another_list = []
for x in userstring:
if x in list:
userstring.remove(x)
for x in userstring:
print(x,end = ' ')
#the code will be like this
来源:https://stackoverflow.com/questions/5486337/how-to-remove-stop-words-using-nltk-or-python