how to operate with a subset of an R dataframe in long format?

限于喜欢 提交于 2019-12-05 10:24:01

Your friend is ddply from the plyr package:

require(plyr)
> ddply(dat, .(group), mutate, new_value = log2(value / value[1]))
  group day      value   new_value
1    g1   0 0.50747820  0.00000000
2    g1   2 0.30676851 -0.72619548
3    g1   4 0.42690767 -0.24942179
4    g2   0 0.69310208  0.00000000
5    g2   2 0.08513597 -3.02522716
6    g2   4 0.22543662 -1.62034599
7    g3   0 0.27453052  0.00000000
8    g3   2 0.27230507 -0.01174274
9    g3   4 0.61582931  1.16556397

A data.table solution for coding elegance and memory efficiency

library(data.table)

DT <- data.table(dat)

# assign within DT by reference

DT[, new_value := log2(value / value[day == 0]), by = group]

Or you could use joins and keys and by-without-by

DTb <- data.table(dat)

setkey(DTb, group)

# val0 contains just those records for day 0
val0 <- DTb[day==0]

 # the i.value refers to value from the i argument 
 # which is in this case `val0` and thus the value for 
 # day = 0 
 DTb[val0, value := log2(value / i.value)]

Both these solution do not require you to sort by day to ensure that value will the first (or any particular) element.


EDIT

Docuementation for i. syntax

    **********************************************
    **                                          **
    **   CHANGES IN DATA.TABLE VERSION 1.7.10   **
    **                                          **
    **********************************************
     NEW FEATURES

o   New function setcolorder() reorders the columns by name
    or by number, by reference with no copy. This is (almost)
    infinitely faster than DT[,neworder,with=FALSE].

o   The prefix i. can now be used in j to refer to join inherited
    columns of i that are otherwise masked by columns in x with
    the same name.

Base solution:

> res <- do.call(rbind,by(dat,dat$group,function(x) log2(x$value/x$value[x$day==0])))
> res

   [,1]       [,2]       [,3]
g1    0 -1.6496538 -2.3673937
g2    0  0.3549090  0.4537402
g3    0 -0.9423506  1.4603706

> colnames(res) <- c("day_0","log_ratio_day_2_day_0","log_ratio_day_4_day_0")
> res

   day_0 log_ratio_day_2_day_0 log_ratio_day_4_day_0
g1     0            -1.6496538            -2.3673937
g2     0             0.3549090             0.4537402
g3     0            -0.9423506             1.4603706

This uses ave in the core of R:

transform(dat, value0 = ave(value, group, FUN = function(x) log2(x / x[1])))
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!