下载并启动flink
运行flink,唯一的前置要求是就是安装了java8。
可以本地查看命令:
java -version
如果是安装了java8,则输出的命令则类似于:
java version "1.8.0_111" Java(TM) SE Runtime Environment (build 1.8.0_111-b14) Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
对于mac系统,可以通过Homebrew来安装
$ brew install apache-flink ... $ flink --version Version: 1.2.0, Commit ID: 1c659cf
启动本地的flink集群
$ ./bin/start-cluster.sh # Start Flink
你可以检查 http://localhost:8081,是否有页面正常可以访问。
你也可以校验log文件路径的数据:
$ tail log/flink-*-standalonesession-*.log INFO ... - Rest endpoint listening at localhost:8081 INFO ... - http://localhost:8081 was granted leadership ... INFO ... - Web frontend listening at http://localhost:8081. INFO ... - Starting RPC endpoint for StandaloneResourceManager at akka://flink/user/resourcemanager . INFO ... - Starting RPC endpoint for StandaloneDispatcher at akka://flink/user/dispatcher . INFO ... - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership ... INFO ... - Starting the SlotManager. INFO ... - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership ... INFO ... - Recovering all persisted jobs. INFO ... - Registering TaskManager ... at ResourceManager
阅读代码
你可以编译并运行SocketWindowWordCount 代码,github地址为 SocketWindowWordCount
public class SocketWindowWordCount { public static void main(String[] args) throws Exception { // the port to connect to final int port; try { final ParameterTool params = ParameterTool.fromArgs(args); port = params.getInt("port"); } catch (Exception e) { System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'"); return; } // get the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // get input data by connecting to the socket DataStream<String> text = env.socketTextStream("localhost", port, "\n"); // parse the data, group it, window it, and aggregate the counts DataStream<WordWithCount> windowCounts = text .flatMap(new FlatMapFunction<String, WordWithCount>() { @Override public void flatMap(String value, Collector<WordWithCount> out) { for (String word : value.split("\\s")) { out.collect(new WordWithCount(word, 1L)); } } }) .keyBy("word") .timeWindow(Time.seconds(5), Time.seconds(1)) .reduce(new ReduceFunction<WordWithCount>() { @Override public WordWithCount reduce(WordWithCount a, WordWithCount b) { return new WordWithCount(a.word, a.count + b.count); } }); // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); } // Data type for words with count public static class WordWithCount { public String word; public long count; public WordWithCount() {} public WordWithCount(String word, long count) { this.word = word; this.count = count; } @Override public String toString() { return word + " : " + count; } } }
运行示例
运行一个flink程序,它将从套接字读取文本,并且每5秒打印一次在前5秒内每个不同单词的出现次数。
首先,我们使用netcat启动本地服务器
$ nc -l 9000
提交flink程序
$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000 Starting execution of program
这个程序通过连接套接字接受等待输入。
$ nc -l 9000 lorem ipsum ipsum ipsum ipsum bye
那么就可以在log中看出print的输出
$ tail -f log/flink-*-taskexecutor-*.out lorem : 1 bye : 1 ipsum : 4
最后停止flink集群的命令为:
$ ./bin/stop-cluster.sh