classification: PCA and logistic regression using sklearn

六眼飞鱼酱① 提交于 2019-12-05 05:39:01

There's a pipeline in sklearn for this purpose.

from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

pca = PCA(n_components=2)
cls = LogisticRegression() 

pipe = Pipeline([('pca', pca), ('logistic', clf)])
pipe.fit(features_train, df_train["target"])
predictions = pipe.predict(features_valid)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!