MatchError while accessing vector column in Spark 2.0

天涯浪子 提交于 2019-11-26 21:06:51

This has nothing to do with sparsity. Since Spark 2.0.0 ML Transformers no longer generate o.a.s.mllib.linalg.VectorUDT but o.a.s.ml.linalg.VectorUDT and are mapped locally to subclasses of o.a.s.ml.linalg.Vector. These are not compatible with old MLLib API which is moving towards deprecation in Spark 2.0.0.

You can convert between to "old" using Vectors.fromML:

import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.ml.linalg.{Vectors => NewVectors}

OldVectors.fromML(NewVectors.dense(1.0, 2.0, 3.0))
OldVectors.fromML(NewVectors.sparse(5, Seq(0 -> 1.0, 2 -> 2.0, 4 -> 3.0)))

but it make more sense to use ML implementation of LDA if you already use ML transformers.

For convenience you can use implicit conversions:

import scala.languageFeature.implicitConversions

object VectorConversions {
  import org.apache.spark.mllib.{linalg => mllib}
  import org.apache.spark.ml.{linalg => ml}

  implicit def toNewVector(v: mllib.Vector) = v.asML
  implicit def toOldVector(v: ml.Vector) = mllib.Vectors.fromML(v)
}

I changed:

val ldaDF = countVectors.map { 
             case Row(id: String, countVector: Vector) => (id, countVector) 
            }

to:

val ldaDF = countVectors.map { case Row(docId: String, features: MLVector) => 
                               (docId.toLong, Vectors.fromML(features)) }

And it worked like a charm! It is aligned with what @zero323 has written.

List of imports:

import org.apache.spark.ml.feature.{CountVectorizer, RegexTokenizer, StopWordsRemover}
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.{Row, SparkSession}
Harsh Kishore

Solution is very simple guys.. find below

//import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.ml.linalg.Vector
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!