问题
Using NumPy's polyfit
(or something similar) is there an easy way to get a solution where one or more of the coefficients are constrained to a specific value?
For example, we could find the ordinary polynomial fitting using:
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
z = np.polyfit(x, y, 3)
yielding
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
But what if I wanted the best fit polynomial where the third coefficient (in the above case z[2]
) was required to be 1? Or will I need to write the fitting from scratch?
回答1:
In this case, I would use curve_fit or lmfit; I quickly show it for the first one.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(x, a, b, c, d):
return a + b * x + c * x ** 2 + d * x ** 3
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
print(np.polyfit(x, y, 3))
popt, _ = curve_fit(func, x, y)
print(popt)
popt_cons, _ = curve_fit(func, x, y, bounds=([-np.inf, 2, -np.inf, -np.inf], [np.inf, 2.001, np.inf, np.inf]))
print(popt_cons)
xnew = np.linspace(x[0], x[-1], 1000)
plt.plot(x, y, 'bo')
plt.plot(xnew, func(xnew, *popt), 'k-')
plt.plot(xnew, func(xnew, *popt_cons), 'r-')
plt.show()
This will print:
[ 0.08703704 -0.81349206 1.69312169 -0.03968254]
[-0.03968254 1.69312169 -0.81349206 0.08703704]
[-0.14331349 2. -0.95913556 0.10494372]
So in the unconstrained case, polyfit
and curve_fit
give identical results (just the order is different), in the constrained case, the fixed parameter is 2, as desired.
The plot looks then as follows:
In lmfit
you can also choose whether a parameter should be fitted or not, so you can then also just set it to a desired value.
回答2:
For completeness, with lmfit
the solution would look like this:
import numpy as np
import matplotlib.pyplot as plt
from lmfit import Model
def func(x, a, b, c, d):
return a + b * x + c * x ** 2 + d * x ** 3
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
pmodel = Model(func)
params = pmodel.make_params(a=1, b=2, c=1, d=1)
params['b'].vary = False
result = pmodel.fit(y, params, x=x)
print(result.fit_report())
xnew = np.linspace(x[0], x[-1], 1000)
ynew = result.eval(x=xnew)
plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'k-')
plt.plot(xnew, ynew, 'r-')
plt.show()
which would print a comprehensive report, including uncertainties, correlations and fit statistics as:
[[Model]]
Model(func)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 10
# data points = 6
# variables = 3
chi-square = 0.066
reduced chi-square = 0.022
Akaike info crit = -21.089
Bayesian info crit = -21.714
[[Variables]]
a: -0.14331348 +/- 0.109441 (76.37%) (init= 1)
b: 2 (fixed)
c: -0.95913555 +/- 0.041516 (4.33%) (init= 1)
d: 0.10494371 +/- 0.008231 (7.84%) (init= 1)
[[Correlations]] (unreported correlations are < 0.100)
C(c, d) = -0.987
C(a, c) = -0.695
C(a, d) = 0.610
and produce a plot of
Note that lmfit.Model
has many improvements over curve_fit
, including automatically naming parameters based on function arguments, allowing any parameter to have bounds or simply be fixed without requiring nonsense like having upper and lower bounds that are almost equal. The key is that lmfit uses Parameter objects that have attributes instead of plain arrays of fitting variables. lmfit also supports mathematical constraints, composite models (eg, adding or multiplying models), and has superior reports.
回答3:
Here is a way to do this using scipy.optimize.curve_fit:
First, let's recreate your example (as a sanity check):
import numpy as np
from scipy.optimize import curve_fit
def f(x, x3, x2, x1, x0):
"""this is the polynomial function"""
return x0 + x1*x + x2*(x*x) + x3*(x*x*x)
popt, pcov = curve_fit(f, x, y)
print(popt)
#array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
Which matches the values you get from np.polyfit()
.
Now adding the constraints for x1
:
popt, pcov = curve_fit(
f,
x,
y,
bounds = ([-np.inf, -np.inf, .999999999, -np.inf], [np.inf, np.inf, 1.0, np.inf])
)
print(popt)
#array([ 0.04659264, -0.48453866, 1. , 0.19438046])
I had to use .999999999
because the lower bound must be strictly less than the upper bound.
Alternatively, you could define your function with the constrained coefficient as a constant, and get the values for the other 3:
def f_new(x, x3, x2, x0):
x1 = 1
return x0 + x1*x + x2*(x*x) + x3*(x*x*x)
popt, pcov = curve_fit(f_new, x, y)
print(popt)
#array([ 0.04659264, -0.48453866, 0.19438046])
来源:https://stackoverflow.com/questions/48469889/how-to-fit-a-polynomial-with-some-of-the-coefficients-constrained