Running LSTM with multiple GPUs gets “Input and hidden tensors are not at the same device”

喜欢而已 提交于 2019-12-05 01:21:14

When you call .cuda() on the tensor, Pytorch moves it to the current GPU device by default (GPU-0). So, due to data parallelism, your data lives in a different GPU while your model goes to another, this results in the runtime error you are facing.

The correct way to implement data parallelism for recurrent neural networks is as follows:

from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

class MyModule(nn.Module):
    # ... __init__, other methods, etc.

    # padded_input is of shape [B x T x *] (batch_first mode) and contains
    # the sequences sorted by lengths
    #   B is the batch size
    #   T is max sequence length
    def forward(self, padded_input, input_lengths):
        total_length = padded_input.size(1)  # get the max sequence length
        packed_input = pack_padded_sequence(padded_input, input_lengths,
                                            batch_first=True)
        packed_output, _ = self.my_lstm(packed_input)
        output, _ = pad_packed_sequence(packed_output, batch_first=True,
                                        total_length=total_length)
        return output

m = MyModule().cuda()
dp_m = nn.DataParallel(m)

You also need to set the CUDA_VISIBLE_DEVICES environment variable accordingly for a multi GPU setup.

References:

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!