What is the largest possible heap size with a 64-bit JVM?

别说谁变了你拦得住时间么 提交于 2019-11-26 20:17:20

If you want to use 32-bit references, your heap is limited to 32 GB.

However, if you are willing to use 64-bit references, the size is likely to be limited by your OS, just as it is with 32-bit JVM. e.g. on Windows 32-bit this is 1.2 to 1.5 GB.

Note: you will want your JVM heap to fit into main memory, ideally inside one NUMA region. That's about 1 TB on the bigger machines. If your JVM spans NUMA regions the memory access and the GC in particular will take much longer. If your JVM heap start swapping it might take hours to GC, or even make your machine unusable as it thrashes the swap drive.

Note: You can access large direct memory and memory mapped sizes even if you use 32-bit references in your heap. i.e. use well above 32 GB.

Compressed oops in the Hotspot JVM

Compressed oops represent managed pointers (in many but not all places in the JVM) as 32-bit values which must be scaled by a factor of 8 and added to a 64-bit base address to find the object they refer to. This allows applications to address up to four billion objects (not bytes), or a heap size of up to about 32Gb. At the same time, data structure compactness is competitive with ILP32 mode.

The answer clearly depends on the JVM implementation. Azul claim that their JVM

can scale ... to more than a 1/2 Terabyte of memory

By "can scale" they appear to mean "runs wells", as opposed to "runs at all".

Windows imposes a memory limit per process, you can see what it is for each version here

See:

User-mode virtual address space for each 64-bit process; With IMAGE_FILE_LARGE_ADDRESS_AWARE set (default): x64: 8 TB Intel IPF: 7 TB 2 GB with IMAGE_FILE_LARGE_ADDRESS_AWARE cleared

I tried -Xmx32255M is accepted by vmargs for compressed oops.

For a 64-bit JVM running in a 64-bit OS on a 64-bit machine, is there any limit besides the theoretical limit of 2^64 bytes or 16 exabytes?

You also have to take hardware limits into account. While pointers may be 64bit current CPUs can only address a less than 2^64 bytes worth of virtual memory.

With uncompressed pointers the hotspot JVM needs a continuous chunk of virtual address space for its heap. So the second hurdle after hardware is the operating system providing such a large chunk, not all OSes support this.

And the third one is practicality. Even if you can have that much virtual memory it does not mean the CPUs support that much physical memory, and without physical memory you will end up swapping, which will adversely affect the performance of the JVM because the GCs generally have to touch a large fraction of the heap.

As other answers mention compressed oops: By bumping the object alignment higher than 8 bytes the limits with compressed oops can be increased beyond 32GB

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!