Greedy Algorithm Implementation

半城伤御伤魂 提交于 2019-12-04 06:52:35

Sounds like a good place to apply a graph algorithm.

Form a graph of people, G. For n people there will be n nodes in the graph. Link nodes i and j if person i knows person j.

Let the first iteration of G be called G_0. Obtain G_1 by making a pass through G and eliminate any person who knows too many or too few people. (That is, eliminate person i if the number of links to i is < 5 or > n-5.)

Repeat the process, obtaining G_2, G_3 up to a maximum of n (or so) iterations, obtaining G_n. The people remaining in this graph are the people you should invite.

Each of the n passes requires a check of n people against n other people, so the algorithm is O(n^3).


MATLAB code to accomplish this (you didn't ask for it, but I thought it was interesting and wrote it anyway):

% number of people on original list
N = 10

% number of connections to (attempt) to generate
% may include self-links (i,i) or duplicates
M = 40

% threshold for "too few" friends
p = 3

% threshold for "too many" friends
q = 3

% Generate connections at random
G = zeros(N);
for k = 1:M
    i = randi(N);
    j = randi(N);
    G(i,j) = 1;
    G(j,i) = 1;
end

% define people to not be their own friends
for i = 1:N
    G(i,i) = 0;
end

% make a copy for future comparison to final G
G_orig = G

% '1' means invited, '0' means not invited
invited = ones(1,N);

% make N passes over graph
for k = 1:N
    % number of people still on the candidate list
    n = sum(invited); 
    % inspect the i'th person
    for i = 1:N 
        people_known = sum(G(i,:));
        if invited(i) == 1 && ((people_known < p) || (people_known > n-q))
            fprintf('Person %i was eliminated. (He knew %i of the %i invitees.)\n',i,people_known,n);
            invited(i) = 0;
            G(i,:) = zeros(1,N);
            G(:,i) = zeros(1,N);
        end
    end
end

fprintf('\n\nFinal connection graph')
G

disp 'People to invite:'
invited

disp 'Total invitees:'
n

Sample output (10 people, 40 connections, must know at least 3 people, must not know at least 3 people)

G_orig =

     0     0     1     1     0     0     0     0     1     0
     0     0     0     0     0     1     0     0     0     1
     1     0     0     1     1     1     0     0     0     1
     1     0     1     0     0     1     0     1     1     0
     0     0     1     0     0     0     1     0     1     1
     0     1     1     1     0     0     0     1     0     1
     0     0     0     0     1     0     0     0     1     0
     0     0     0     1     0     1     0     0     0     1
     1     0     0     1     1     0     1     0     0     1
     0     1     1     0     1     1     0     1     1     0

Person 2 was eliminated. (He knew 2 of the 10 invitees.)
Person 7 was eliminated. (He knew 2 of the 10 invitees.)


Final connection graph
G =

     0     0     1     1     0     0     0     0     1     0
     0     0     0     0     0     0     0     0     0     0
     1     0     0     1     1     1     0     0     0     1
     1     0     1     0     0     1     0     1     1     0
     0     0     1     0     0     0     0     0     1     1
     0     0     1     1     0     0     0     1     0     1
     0     0     0     0     0     0     0     0     0     0
     0     0     0     1     0     1     0     0     0     1
     1     0     0     1     1     0     0     0     0     1
     0     0     1     0     1     1     0     1     1     0

People to invite:

invited =

     1     0     1     1     1     1     0     1     1     1

Total invitees:

n =

     8

I am assuming following data structure for the representation of the information:

Person
    name : string, if this is empty or null, the person isnt not invited to party
    knows: array of pointers to type Person. Indicates whom this person 'knows'
    knows_cnt : size of "knows" array

Details of everyone (including host) can be stored in "Person individuals[n]".

The host of party being at first position.

A subroutine that i might need for algo:

RemovePerson (individuals, n, i)
// removes i'th person from individuals an array of n persons

    set individuals[i].name to empty so that this person is discarded

    For j from 1 to individuals[i].knows_cnt
    // as knows is symmetric, we can get the persons' contact right away
        Person contact = individuals[i].knows[j]

        if contact.name is empty, 
            continue

        modify contact.knows to remove i'th person. 
        modify corresponding contact.knows_cnt
    end for

end RemovePerson

The proposed algorithm:

change = true 
invitees = n

while [change == true]
    change = false

    for i = 2 to n do
    // start from 2 to prevent the host getting discarded due to condition #2

        if individuals[i].name is empty, 
            continue

        // condition #1,
        // check if the person knows atleast 5 people
        if individuals[i].knows_cnt < 5
            change = true 
            invitees = invitees  - 1
            RemovePerson(individuals, n, i)

        // condition #2
        // check to find out if the person will get to know 5 new people
        if (invitees - individuals[i].knows_cnt) < 5
            change = true 
            invitees = invitees  - 1
            RemovePerson(individuals, n, i)

    end for

end while   

return invitees

Let me know if you face any difficulty in understanding this algo.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!