Why Bubble sort complexity is O(n^2)?

微笑、不失礼 提交于 2019-12-04 05:26:40

问题


As I understand, the complexity of an algorithm is a maximum number of operations performed while sorting. So, the complexity of Bubble sort should be a sum of arithmmetic progression (from 1 to n-1), not n^2. The following implementation counts number of comparisons:

public int[] sort(int[] a) {
    int operationsCount = 0;
    for (int i = 0; i < a.length; i++) {
        for(int j = i + 1; j < a.length; j++) {
            operationsCount++;
            if (a[i] > a[j]) {
                int temp = a[i];
                a[i] = a[j];
                a[j] = temp;
            }
        }
    }
    System.out.println(operationsCount);
    return a;
}

The ouput for array with 10 elements is 45, so it's a sum of arithmetic progression from 1 to 9.

So why Bubble sort's complexity is n^2, not S(n-1) ?


回答1:


This is because big-O notation describes the nature of the algorithm. The major term in the expansion (n-1) * (n-2) / 2 is n^2. And so as n increases all other terms become insignificant.

You are welcome to describe it more precisely, but for all intents and purposes the algorithm exhibits behaviour that is of the order n^2. That means if you graph the time complexity against n, you will see a parabolic growth curve.




回答2:


Let's do a worst case analysis.

In the worst case, the if (a[i] > a[j]) test will always be true, so the next 3 lines of code will be executed in each loop step. The inner loop goes from j=i+1 to n-1, so it will execute Sum_{j=i+1}^{n-1}{k} elementary operations (where k is a constant number of operations that involve the creation of the temp variable, array indexing, and value copying). If you solve the summation, it gives a number of elementary operations that is equal to k(n-i-1). The external loop will repeat this k(n-i-1) elementary operations from i=0 to i=n-1 (ie. Sum_{i=0}^{n-1}{k(n-i-1)}). So, again, if you solve the summation you see that the final number of elementary operations is proportional to n^2. The algorithm is quadratic in the worst case.

As you are incrementing the variable operationsCount before running any code in the inner loop, we can say that k (the number of elementary operations executed inside the inner loop) in our previous analysis is 1. So, solving Sum_{i=0}^{n-1}{n-i-1} gives n^2/2 - n/2, and substituting n with 10 gives a final result of 45, just the same result that you got by running the code.



来源:https://stackoverflow.com/questions/14843486/why-bubble-sort-complexity-is-on2

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!