How to import the tensorflow lite interpreter in Python?

泄露秘密 提交于 2019-12-04 04:25:46

I was able to write python scripts to do classification 1, object-detection (tested with SSD MobilenetV{1,2}) 2, and image semantic segmentation 3 on an x86 running Ubuntu and an ARM64 board running Debian.

  • How to build Python binding for TF Lite code: Build pip with recent TensorFlow master branch and install it (Yes, those binding was in TF 1.8. However, I don't know why they are not installed). See 4 for how to to build and install TensorFlow pip package.

Regarding using the TensorFlow Lite Interpreter from Python, the example below is copied from the documentation. The code is available on the master branch of TensorFlow GitHub.

Using the interpreter from a model file

The following example shows how to use the TensorFlow Lite Python interpreter when provided a TensorFlow Lite FlatBuffer file. The example also demonstrates how to run inference on random input data. Run help(tf.contrib.lite.Interpreter) in the Python terminal to get detailed documentation on the interpreter.

import numpy as np
import tensorflow as tf

# Load TFLite model and allocate tensors.
interpreter = tf.contrib.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()

# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)

interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!