K-means Plotting for 3 Dimensional Data

一个人想着一个人 提交于 2019-12-03 20:33:42

Your code is very messy, and unnecessarily long..

Here is smaller example that does the same thing. You'll need the Statistics toolbox to run it (for the kmeans function and Iris dataset):

%# load dataset of 150 instances and 3 dimensions
load fisheriris
X = meas(:,1:3);
[numInst,numDims] = size(X);

%# K-means clustering
%# (K: number of clusters, G: assigned groups, C: cluster centers)
K = 3;
[G,C] = kmeans(X, K, 'distance','sqEuclidean', 'start','sample');

%# show points and clusters (color-coded)
clr = lines(K);
figure, hold on
scatter3(X(:,1), X(:,2), X(:,3), 36, clr(G,:), 'Marker','.')
scatter3(C(:,1), C(:,2), C(:,3), 100, clr, 'Marker','o', 'LineWidth',3)
hold off
view(3), axis vis3d, box on, rotate3d on
xlabel('x'), ylabel('y'), zlabel('z')

You could simply go for scatter():

As you can see from the image, you differentiate colors, size of the clusters. FOr more details check out the examples in the documentation.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!