Shortest Path For A Dag

佐手、 提交于 2019-12-03 16:50:07
Falaina

I'm going to go against my intuition and assume this isn't homework. You have to take advantage of the information that a topological ordering gives you. Whenever you examine the node n in a topological ordering, you have the guarantee that you've already traversed every possible path to n. Using this it's clear to see that you can generate the shortest path with one linear scan of a topological ordering (pseudocode):

Graph g
Source s
top_sorted_list = top_sort(g)

cost = {} // A mapping between a node, the cost of its shortest path, and 
          //its parent in the shortest path

for each vertex v in top_sorted_list:
  cost[vertex].cost = inf
  cost[vertex].parent = None

cost[s] = 0

for each vertex v in top_sorted_list:
   for each edge e in adjacensies of v:
      if cost[e.dest].cost > cost[v].cost + e.weight:
        cost[e.dest].cost =  cost[v].cost + e.weight
        e.dest.parent = v

Now you can look up any shortest path from s to a destination. You'd just need to look up the destination in the cost mapping, get it's parent, and repeat this process until you get a node whose parent is s, then you have the shortest path.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!