3D variant for summed area table (SAT)

岁酱吖の 提交于 2019-12-03 15:59:22

I'm not sure but something like the following can be thought of. ( I haven't gone through the Wikipedia code )

For every coordinate (x,y,z) find the sum of all elements from (0,0,0) to this element.
Call it S(0,0,0 to x,y,z) or S0(x,y,z).
This can be easily built by traversing the 3D matrix once.

S0( x,y,z ) =  value[x,y,z] + S0(x-1,y-1,z-1) + 
               S0( x,y,z-1 ) + S0( x, y-1, z ) + S0( x-1, y, z ) 
               - S0( x-1, y-1, z ) - S0( x, y-1, z-1 ) - S0( x-1, y, z-1 )

(basically element value + S0(x-1,y-1,z-1) + 3 faces (xy,yz,zx) )

Now for every query (x1,y1,z1) to (x2,y2,z2), first convert the coordinates so that x1,y1,z1 is the corner of the cuboid closest to origin and x2,y2,z2 is the corner that is farthest from origin.

S( (x1,y1,z1) to (x2,y2,z2) ) = S0( x2,y2,z2 ) - S0( x2, y2, z1 ) 
                                - S0( x2, y1, z2 ) - S0( x1, y2, z2 )
                                + S0( x1, y1, z2 ) + S0( x1, y2, z1 ) + S0( x2, y1, z1 )
                                - S0( x1, y1, z1 )

(subject to corrections)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!