which coefficients go to which class in multiclass logistic regression in scikit learn?

时光毁灭记忆、已成空白 提交于 2019-12-03 15:25:36

The order will be same as returned by the logit.classes_ (classes_ is an attribute of the fitted model, which represents the unique classes present in y) and mostly they will be arranged alphabetically in case of strings.

To explain it, we the above mentioned labels y on an random dataset with LogisticRegression:

import numpy as np
from sklearn.linear_model import LogisticRegression

X = np.random.rand(45,5)
y = np.array(['GR3', 'GR4', 'SHH', 'GR3', 'GR4', 'SHH', 'GR4', 'SHH',
              'GR4', 'WNT', 'GR3', 'GR4', 'GR3', 'SHH', 'SHH', 'GR3', 
              'GR4', 'SHH', 'GR4', 'GR3', 'SHH', 'GR3', 'SHH', 'GR4', 
              'SHH', 'GR3', 'GR4', 'GR4', 'SHH', 'GR4', 'SHH', 'GR4', 
              'GR3', 'GR3', 'WNT', 'SHH', 'GR4', 'SHH', 'SHH', 'GR3',
              'WNT', 'GR3', 'GR4', 'GR3', 'SHH'], dtype=object)

lr = LogisticRegression()
lr.fit(X,y)

# This is what you want
lr.classes_

#Out:
#    array(['GR3', 'GR4', 'SHH', 'WNT'], dtype=object)

lr.coef_
#Out:
#    array of shape [n_classes, n_features]

So in the coef_ matrix, the index 0 in rows represents the 'GR3' (the first class in classes_ array, 1 = 'GR4' and so on.

Hope it helps.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!