问题
Is there a way to flatten an arbitrarily nested Spark Dataframe? Most of the work I'm seeing is written for specific schema, and I'd like to be able to generically flatten a Dataframe with different nested types (e.g. StructType, ArrayType, MapType, etc).
Say I have a schema like:
StructType(List(StructField(field1,...), StructField(field2,...), ArrayType(StructType(List(StructField(nested_field1,...), StructField(nested_field2,...)),nested_array,...)))
Looking to adapt this into a flat table with a structure like:
field1
field2
nested_array.nested_field1
nested_array.nested_field2
FYI, looking for suggestions for Pyspark, but other flavors of Spark are also appreciated.
回答1:
This issue might be a bit old, but for anyone out there still looking for a solution you can flatten complex data types inline using select *:
first let's create the nested dataframe:
from pyspark.sql import HiveContext
hc = HiveContext(sc)
nested_df = hc.read.json(sc.parallelize(["""
{
"field1": 1,
"field2": 2,
"nested_array":{
"nested_field1": 3,
"nested_field2": 4
}
}
"""]))
now to flatten it:
flat_df = nested_df.select("field1", "field2", "nested_array.*")
You'll find useful examples here: https://docs.databricks.com/delta/data-transformation/complex-types.html
If you have too many nested arrays, you can use:
flat_cols = [c[0] for c in nested_df.dtypes if c[1][:6] != 'struct']
nested_cols = [c[0] for c in nested_df.dtypes if c[1][:6] == 'struct']
flat_df = nested_df.select(*flat_cols, *[c + ".*" for c in nested_cols])
回答2:
I've developed a recursively approach to flatten any nested DataFrame. The implementation is on the AWS Data Wrangler project:
import awswrangler
session = awswrangler.Session(spark_session=spark)
dfs = session.spark.flatten(dataframe=df_nested)
for name, df_flat in dfs.items():
print(name)
df_flat.show()
Or check the sources to see the raw implementation.
回答3:
Here's my final approach:
1) Map the rows in the dataframe to an rdd of dict. Find suitable python code online for flattening dict.
flat_rdd = nested_df.map(lambda x : flatten(x))
where
def flatten(x):
x_dict = x.asDict()
...some flattening code...
return x_dict
2) Convert the RDD[dict] back to a dataframe
flat_df = sqlContext.createDataFrame(flat_rdd)
回答4:
The following gist will flatten the structure of the nested json,
import typing as T
import cytoolz.curried as tz
import pyspark
def schema_to_columns(schema: pyspark.sql.types.StructType) -> T.List[T.List[str]]:
"""
Produce a flat list of column specs from a possibly nested DataFrame schema
"""
columns = list()
def helper(schm: pyspark.sql.types.StructType, prefix: list = None):
if prefix is None:
prefix = list()
for item in schm.fields:
if isinstance(item.dataType, pyspark.sql.types.StructType):
helper(item.dataType, prefix + [item.name])
else:
columns.append(prefix + [item.name])
helper(schema)
return columns
def flatten_frame(frame: pyspark.sql.DataFrame) -> pyspark.sql.DataFrame:
aliased_columns = list()
for col_spec in schema_to_columns(frame.schema):
c = tz.get_in(col_spec, frame)
if len(col_spec) == 1:
aliased_columns.append(c)
else:
aliased_columns.append(c.alias(':'.join(col_spec)))
return frame.select(aliased_columns)
You can then flatten the nested data as
flatten_data = flatten_frame(nested_df)
This will give you the flatten dataframe.
The gist was taken from https://gist.github.com/DGrady/b7e7ff3a80d7ee16b168eb84603f5599
来源:https://stackoverflow.com/questions/34271398/flatten-nested-spark-dataframe