Tensorflow feature column for variable list of values

自闭症网瘾萝莉.ら 提交于 2019-12-03 12:36:49

Here is an example how to feed data to the indicator column:

features = {'letter': [['A','A'], ['C','D'], ['E','F'], ['G','A'], ['X','R']]}

letter_feature = tf.feature_column.categorical_column_with_vocabulary_list(
                "letter", ["A", "B", "C"], dtype=tf.string)

indicator = tf.feature_column.indicator_column(letter_feature)
tensor = tf.feature_column.input_layer(features, [indicator])

with tf.Session() as session:
    session.run(tf.global_variables_initializer())
    session.run(tf.tables_initializer())
    print(session.run([tensor]))

Which outputs:

[array([[2., 0., 0.],
       [0., 0., 1.],
       [0., 0., 0.],
       [1., 0., 0.],
       [0., 0., 0.]], dtype=float32)]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!