Interactive matplotlib plot with two sliders

廉价感情. 提交于 2019-11-26 18:24:01
Joe Kington

In addition to what @triplepoint mentioned, have a look at the slider widget.

There's an example on the matplotlib examples page. It's a graphical slider bar rather than keyboard bindings, but it works quite well for what you want to do.

Also note that to guarantee the sliders and buttons remain responsive and not garbage-collected, references to the objects (amp_slider, freq_slider, etc.) should be maintained by yourself.

(I'm making this community wiki, as I'm just copy-pasting from the example. This particular example teaches bad habits (e.g. from pylab import *), but it gets the point across. The example has been fixed to avoid the use of pylab.)

from numpy import pi, sin
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons

def signal(amp, freq):
    return amp * sin(2 * pi * freq * t)

axis_color = 'lightgoldenrodyellow'

fig = plt.figure()
ax = fig.add_subplot(111)

# Adjust the subplots region to leave some space for the sliders and buttons
fig.subplots_adjust(left=0.25, bottom=0.25)

t = np.arange(0.0, 1.0, 0.001)
amp_0 = 5
freq_0 = 3

# Draw the initial plot
# The 'line' variable is used for modifying the line later
[line] = ax.plot(t, signal(amp_0, freq_0), linewidth=2, color='red')
ax.set_xlim([0, 1])
ax.set_ylim([-10, 10])

# Add two sliders for tweaking the parameters

# Define an axes area and draw a slider in it
amp_slider_ax  = fig.add_axes([0.25, 0.15, 0.65, 0.03], axisbg=axis_color)
amp_slider = Slider(amp_slider_ax, 'Amp', 0.1, 10.0, valinit=amp_0)

# Draw another slider
freq_slider_ax = fig.add_axes([0.25, 0.1, 0.65, 0.03], axisbg=axis_color)
freq_slider = Slider(freq_slider_ax, 'Freq', 0.1, 30.0, valinit=freq_0)

# Define an action for modifying the line when any slider's value changes
def sliders_on_changed(val):
    line.set_ydata(signal(amp_slider.val, freq_slider.val))
    fig.canvas.draw_idle()
amp_slider.on_changed(sliders_on_changed)
freq_slider.on_changed(sliders_on_changed)

# Add a button for resetting the parameters
reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
reset_button = Button(reset_button_ax, 'Reset', color=axis_color, hovercolor='0.975')
def reset_button_on_clicked(mouse_event):
    freq_slider.reset()
    amp_slider.reset()
reset_button.on_clicked(reset_button_on_clicked)

# Add a set of radio buttons for changing color
color_radios_ax = fig.add_axes([0.025, 0.5, 0.15, 0.15], axisbg=axis_color)
color_radios = RadioButtons(color_radios_ax, ('red', 'blue', 'green'), active=0)
def color_radios_on_clicked(label):
    line.set_color(label)
    fig.canvas.draw_idle()
color_radios.on_clicked(color_radios_on_clicked)

plt.show()

Matplotlib has some fairly nice gui functionality. There are some documentation examples in the source tarball of matplotlib, in /examples/user_interfaces and matplotlib>/examples/event_handling. Specifically on keyhandling is: http://matplotlib.sourceforge.net/examples/event_handling/keypress_demo.html

I have done something kind of similar to what you are aiming for:

import numpy as np
import pylab

class plotter:
    def __init__(self, initial_values):
        self.values
        self.fig = pylab.figure()
        pylab.gray()
        self.ax = self.fig.add_subplot(111)
        self.draw()
        self.fig.canvas.mpl_connect('key_press_event',self.key)

    def draw(self):
        im = your_function(self.values)
        pylab.show()
        self.ax.imshow(im)

    def key(self, event):
        if event.key=='right':
            self.values = modify()
        elif event.key == 'left':
            self.values = modify()

        self.draw()
        self.fig.canvas.draw()

I was using this to shift through displaying different images in a stack on keypresses, but you should be able to put logic in to modify your values given keyboard input.

If you want to do things like have the user input values, I think the examples have options for dialog boxes, but if you just want to increment/decrement a number of variables, just defining keyboard pairs for them in this manner might work well

Use waitforbuttonpress(timeout=0.001) then plot will see your mouse ticks.

I don't think that simply plotting graphs using plt.plot will allow you to do this. You will need to yourself make a custom GUI script/app by embedding Matplotlib into it. Currently, Matplotlib supports all the major GUI toolkits - PyGTK+, PyQt4 and wxPython.
I use wxPython and embedding matplotlib in it is fairly easy. Similar should be case with the other GUI toolkits. You can get all the information you need for this in the book -

It is available on amazon here.

For ipython or jupyter notebooks you can use ipywidgets:

from ipywidgets import *
def update(w=0,h=0):
    print(h+w)

interact(update, w= widgets.IntSlider(value=1, min=0, max=7, step=1) , 
                 h= widgets.IntSlider(value=1, min=0, max=7, step=1) );

See documentation here: https://ipywidgets.readthedocs.io/en/stable/examples/Using%20Interact.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!