C++11 thread-safe queue

半腔热情 提交于 2019-11-26 18:23:57

According to the standard condition_variables are allowed to wakeup spuriously, even if the event hasn't occured. In case of a spurious wakeup it will return cv_status::no_timeout (since it woke up instead of timing out), even though it hasn't been notified. The correct solution for this is of course to check if the wakeup was actually legit before proceding.

The details are specified in the standard §30.5.1 [thread.condition.condvar]:

—The function will unblock when signaled by a call to notify_one(), a call to notify_all(), expiration of the absolute timeout (30.2.4) specified by abs_time, or spuriously.

...

Returns: cv_status::timeout if the absolute timeout (30.2.4) specifiedby abs_time expired, other-ise cv_status::no_timeout.

ChewOnThis_Trident

Just looking at it, when you check a condition variable it is best to use a while loop (so that if it get wakes up and is still not invalid you check again). I just wrote a template for an async queue, hope this helps.

#ifndef SAFE_QUEUE
#define SAFE_QUEUE

#include <queue>
#include <mutex>
#include <condition_variable>

// A threadsafe-queue.
template <class T>
class SafeQueue
{
public:
  SafeQueue(void)
    : q()
    , m()
    , c()
  {}

  ~SafeQueue(void)
  {}

  // Add an element to the queue.
  void enqueue(T t)
  {
    std::lock_guard<std::mutex> lock(m);
    q.push(t);
    c.notify_one();
  }

  // Get the "front"-element.
  // If the queue is empty, wait till a element is avaiable.
  T dequeue(void)
  {
    std::unique_lock<std::mutex> lock(m);
    while(q.empty())
    {
      // release lock as long as the wait and reaquire it afterwards.
      c.wait(lock);
    }
    T val = q.front();
    q.pop();
    return val;
  }

private:
  std::queue<T> q;
  mutable std::mutex m;
  std::condition_variable c;
};
#endif

This is probably how you should do it:

void push(std::string&& filename)
{
    {
        std::lock_guard<std::mutex> lock(qMutex);

        q.push(std::move(filename));
    }

    populatedNotifier.notify_one();
}

bool try_pop(std::string& filename, std::chrono::milliseconds timeout)
{
    std::unique_lock<std::mutex> lock(qMutex);

    if(!populatedNotifier.wait_for(lock, timeout, [this] { return !q.empty(); }))
        return false;

    filename = std::move(q.front());
    q.pop();

    return true;    
}

Adding to the accepted answer, I would say that implementing a correct multi producers / multi consumers queue is difficult (easier since C++11, though)

I would suggest you to try the (very good) lock free boost library, the "queue" structure will do what you want, with wait-free/lock-free guarantees and without the need for a C++11 compiler.

I am adding this answer now because the lock-free library is quite new to boost (since 1.53 I believe)

I would rewrite your dequeue function as:

std::string FileQueue::dequeue(const std::chrono::milliseconds& timeout)
{
    std::unique_lock<std::mutex> lock(qMutex);
    while(q.empty()) {
        if (populatedNotifier.wait_for(lock, timeout) == std::cv_status::timeout ) 
           return std::string();
    }
    std::string ret = q.front();
    q.pop();
    return ret;
}

It is shorter and does not have duplicate code like your did. Only issue it may wait longer that timeout. To prevent that you would need to remember start time before loop, check for timeout and adjust wait time accordingly. Or specify absolute time on wait condition.

There is also GLib solution for this case, I did not try it yet, but I believe it is a good solution. https://developer.gnome.org/glib/2.36/glib-Asynchronous-Queues.html#g-async-queue-new

BlockingCollection is a C++11 thread safe collection class that provides support for queue, stack and priority containers. It handles the "empty" queue scenario you described. As well as a "full" queue.

You may like lfqueue, https://github.com/Taymindis/lfqueue. It’s lock free concurrent queue. I’m currently using it to consuming the queue from multiple incoming calls and works like a charm.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!