Color quantization of an image using K-means clustering (using RGB features)

会有一股神秘感。 提交于 2019-12-03 08:56:19

I think you are looking for color quantization.

[imgQ,map]= rgb2ind(img,4,'nodither'); %change this 4 to the number of desired colors
                                       %in quantized image
imshow(imgQ,map);

Result:

Using kmeans :

%img is the original image

imgVec=[reshape(img(:,:,1),[],1) reshape(img(:,:,2),[],1) reshape(img(:,:,3),[],1)];
[imgVecQ,imgVecC]=kmeans(double(imgVec),4); %4 colors
imgVecQK=pdist2(imgVec,imgVecC); %choosing the closest centroid to each pixel, 
[~,indMin]=min(imgVecQK,[],2);   %avoiding double for loop

imgVecNewQ=imgVecC(indMin,:);  %quantizing
imgNewQ=img;
imgNewQ(:,:,1)=reshape(imgVecNewQ(:,1),size(img(:,:,1))); %arranging back into image
imgNewQ(:,:,2)=reshape(imgVecNewQ(:,2),size(img(:,:,1)));
imgNewQ(:,:,3)=reshape(imgVecNewQ(:,3),size(img(:,:,1)));

imshow(img)
figure,imshow(imgNewQ,[]);

Result of kmeans :

If you want to add distance constraint to kmeans, the code will be slightly different. Basically, you need to concatenate pixel coordinates of corresponding pixel vales too. But remember, while assigning nearest centroid to each pixel, assign only the color i.e. the first 3 dimensions, not the last 2. That doesn't make sense, obviously. The code is very similar to the previous, please note the changes and understand them.

[col,row]=meshgrid(1:size(img,2),1:size(img,1));
imgVec=[reshape(img(:,:,1),[],1) reshape(img(:,:,2),[],1) reshape(img(:,:,3),[],1) row(:)   col(:)];
[imgVecQ,imgVecC]=kmeans(double(imgVec),4); %4 colors
imgVecQK=pdist2(imgVec(:,1:3),imgVecC(:,1:3));

[~,indMin]=min(imgVecQK,[],2);
imgVecNewQ=imgVecC(indMin,1:3);  %quantizing
imgNewQ=img;
imgNewQ(:,:,1)=reshape(imgVecNewQ(:,1),size(img(:,:,1))); %arranging back into image
imgNewQ(:,:,2)=reshape(imgVecNewQ(:,2),size(img(:,:,1)));
imgNewQ(:,:,3)=reshape(imgVecNewQ(:,3),size(img(:,:,1)));

imshow(img)
figure,imshow(imgNewQ,[]);

Result of kmeans with distance constraint:

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!