how to Load CSV Data in scikit and using it for Naive Bayes Classification

一曲冷凌霜 提交于 2019-12-03 08:03:19

The following should get you started you will need pandas and numpy. You can load your .csv into a data frame and use that to input into the model. You all so need to define targets (0 for negatives and 1 for positives, assuming binary classification) depending on what you are trying to separate.

from sklearn.naive_bayes import GaussianNB
import pandas as pd
import numpy as np

# create data frame containing your data, each column can be accessed # by df['column   name']
df = pd.read_csv('/your/path/yourFile.csv')

target_names = np.array(['Positives','Negatives'])

# add columns to your data frame
df['is_train'] = np.random.uniform(0, 1, len(df)) <= 0.75
df['Type'] = pd.Factor(targets, target_names)
df['Targets'] = targets

# define training and test sets
train = df[df['is_train']==True]
test = df[df['is_train']==False]

trainTargets = np.array(train['Targets']).astype(int)
testTargets = np.array(test['Targets']).astype(int)

# columns you want to model
features = df.columns[0:7]

# call Gaussian Naive Bayesian class with default parameters
gnb = GaussianNB()

# train model
y_gnb = gnb.fit(train[features], trainTargets).predict(train[features])
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!