How to modify a Spark Dataframe with a complex nested structure?

為{幸葍}努か 提交于 2019-12-03 07:44:45

Since Spark 1.6, you can use case classes to map your dataframes (called datasets). Then, you can map your data and transform it to the new schema you want. For example:

case class Root(name: String, data: Seq[Data])
case class Data(name: String, values: Map[String, String])
case class NullableRoot(name: String, data: Seq[NullableData])
case class NullableData(name: String, value: Map[String, String], values: Map[String, String])

val nullableDF = df.as[Root].map { root =>
  val nullableData = root.data.map(data => NullableData(data.name, null, data.values))
  NullableRoot(root.name, nullableData)
}.toDF()

The resulting schema of nullableDF will be:

root
 |-- name: string (nullable = true)
 |-- data: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- name: string (nullable = true)
 |    |    |-- value: map (nullable = true)
 |    |    |    |-- key: string
 |    |    |    |-- value: string (valueContainsNull = true)
 |    |    |-- values: map (nullable = true)
 |    |    |    |-- key: string
 |    |    |    |-- value: string (valueContainsNull = true)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!