struct task_struct { struct thread_info thread_info; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped: */ void *stack; /* 堆指针 */ atomic_t usage; /* 进程描述符使用计数,被置为2时,表示进 程描述符正在被使用而且 其相应的进程处于活动状态 */ unsigned int flags; /* Per task flags (PF_*), defined further below: */ unsigned int ptrace; /* ptrace系统调用,成员ptrace被设置为0时表示不需要被跟踪 */ /* SMP CPU: */ struct llist_node wake_entry; int on_cpu; /* 在SMP上帮助实现无加锁的进程切换 */ unsigned int cpu; /* end: */ unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; /* * recent_used_cpu is initially set as the last CPU used by a task * that wakes affine another task. Waker/wakee relationships can * push tasks around a CPU where each wakeup moves to the next one. * Tracking a recently used CPU allows a quick search for a recently * used CPU that may be idle. */ int recent_used_cpu; int wake_cpu; #endif int on_rq; int prio, static_prio, normal_prio; /* prio: 调度器考虑的优先级保存在prio*/ /* static_prio: 用于保存进程的"静态优先级*/ /* normal_prio: 表示基于进程的"静态优先级"和"调度策略"计算出的优先级*/ unsigned int rt_priority; /* rt_priority:表示实时进程的优先级,需要明白的是, "实时进程优先级"和"普通进程优先级"有两个独立的范畴, 实时进程即使是最低优先级也高于普通进程,最低的实时优先级为0, 最高的优先级为99,值越大,表明优先级越高*/ const struct sched_class *sched_class; /* sched_class: 该进程所属的调度类*/ struct sched_entity se; struct sched_rt_entity rt; /* rt: 用于实时进程的调用实体 */ struct task_group *sched_task_group; /* 组调度*/ struct sched_dl_entity dl; /* List of struct preempt_notifier: */ struct hlist_head preempt_notifiers; unsigned int btrace_seq; unsigned int policy; /* policy表示进程的调度策略 */ int nr_cpus_allowed; cpumask_t cpus_allowed; #ifdef CONFIG_PREEMPT_RCU /* RCU同步原语 */ int rcu_read_lock_nesting; union rcu_special rcu_read_unlock_special; struct list_head rcu_node_entry; struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU unsigned long rcu_tasks_nvcsw; u8 rcu_tasks_holdout; u8 rcu_tasks_idx; int rcu_tasks_idle_cpu; struct list_head rcu_tasks_holdout_list; #endif /* #ifdef CONFIG_TASKS_RCU */ struct sched_info sched_info; /* sched_info:用于调度器统计进程的运行信息*/ struct list_head tasks; /* 通过list_head将当前进程的task_struct串联进内核的进程列表中, 构建;linux进程链表*/ struct plist_node pushable_tasks; / * limit pushing to one attempt */ struct rb_node pushable_dl_tasks; struct mm_struct *mm; /* mm: 指向进程所拥有的内存描述符*/ struct mm_struct *active_mm; /* active_mm: active_mm指向进程运行时所使用的内存描述符*/ /* Per-thread vma caching: */ struct vmacache vmacache; #ifdef SPLIT_RSS_COUNTING struct task_rss_stat rss_stat; #endif int exit_state; /* 进程退出状态码*/ int exit_code; /* exit_code :用于设置进程的终止代号, 这个值要么是_exit()或exit_group() 系统调用参数(正常终止), 要么是由内核提供的一个错误代号(异常终止)*/ int exit_signal; /* exit_signal被置为-1时表示是某个线程组中的一员。 只有当线程组的最后一个成员终止时, 才会产生一个信号,以通知线程组的领头进程的父进程*/ int pdeath_signal; /* pdeath_signal用于判断父进程终止时发送信号 */ /* JOBCTL_*, siglock protected: */ unsigned long jobctl; unsigned int personality; /* Used for emulating ABI behavior of previous Linux versions: */ /* personality用于处理不同的ABI */ /* Scheduler bits, serialized by scheduler locks: */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; unsigned sched_remote_wakeup:1; #ifdef CONFIG_PSI unsigned sched_psi_wake_requeue:1; #endif /* Force alignment to the next boundary: */ unsigned :0; /* Unserialized, strictly 'current' */ /* in_execve用于通知LSM是否被do_execve()函数所调用 */ unsigned in_execve:1; unsigned in_iowait:1; /* in_iowait用于判断是否进行iowait计数 */ #ifndef TIF_RESTORE_SIGMASK unsigned restore_sigmask:1; #endif unsigned in_user_fault:1; #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif #ifdef CONFIG_CGROUPS /* disallow userland-initiated cgroup migration */ unsigned no_cgroup_migration:1; #endif #ifdef CONFIG_BLK_CGROUP /* to be used once the psi infrastructure lands upstream. */ unsigned use_memdelay:1; #endif unsigned long atomic_flags; /* Flags requiring atomic access. */ struct restart_block restart_block; pid_t pid; pid_t tgid; 进程标识符(PID) 在CONFIG_BASE_SMALL配置为0的情况下,PID的取值范围是0到32767,即系统中的进程数最大为32768个 #define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000) 在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程 (该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。 只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。 注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值 /* 防止内核堆栈溢出,在GCC编译内核时,需要加上-fstack-protector选项 */ unsigned long stack_canary; /* * Pointers to the (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ /* 表示进程亲属关系的成员*/ struct task_struct __rcu *real_parent; /* 指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程 */ /* Recipient of SIGCHLD, wait4() reports: */ struct task_struct __rcu *parent; /* parent: 指向其父进程,当它终止时,必须向它的父进程发送信号。 它的值通常与real_parent相同*/ /* * Children/sibling form the list of natural children: */ struct list_head children; /* children: 表示链表的头部,链表中的所有元素都是它的子进程(子进程链表)*/ struct list_head sibling; /* sibling: 用于把当前进程插入到兄弟链表中(连接到父进程的子进程链表(兄弟链表)*/ struct task_struct *group_leader; /* group_leader: 指向其所在进程组的领头进程*/ /* * 'ptraced' is the list of tasks this task is using ptrace() on. * * This includes both natural children and PTRACE_ATTACH targets. * 'ptrace_entry' is this task's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid *thread_pid; struct hlist_node pid_links[PIDTYPE_MAX]; /* PID散列表和链表*/ struct list_head thread_group; /* 线程组中所有进程的链表*/ struct list_head thread_node; /* do_fork函数*/ struct completion *vfork_done; /* 在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址*/ /* CLONE_CHILD_SETTID: */ int __user *set_child_tid; /* CLONE_CHILD_CLEARTID: */ int __user *clear_child_tid; /* 如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或CLONE_CHILD_CLEARTID, 则会把child_tidptr参数的值分别复制到set_child_tid和clear_child_tid成员。 这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值*/ u64 utime; u64 stime; u64 utimescaled; u64 stimescaled; /* 1) utime 用于记录进程在"用户态"下所经过的节拍数(定时器) 2) stime 用于记录进程在"内核态"下所经过的节拍数(定时器) 3) utimescaled 用于记录进程在"用户态"的运行时间,但它们以处理器的频率为刻度 4) stimescaled 用于记录进程在"内核态"的运行时间,但它们以处理器的频率为刻度*/ u64 gtime; /* 以节拍计数的虚拟机运行时间(guest time)*/ struct prev_cputime prev_cputime; /* prev_utime、prev_stime是先前的运行时间*/ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN struct vtime vtime; #endif #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif /* Context switch counts: */ unsigned long nvcsw; /* 自愿(voluntary)上下文切换计数*/ unsigned long nivcsw; /* 非自愿(involuntary)上下文切换计数*/ /* Monotonic time in nsecs: */ u64 start_time; /* 进程创建时间*/ /* Boot based time in nsecs: */ u64 real_start_time; /* 进程睡眠时间,还包含了进程睡眠时间,常用于/proc/pid/stat*/ /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ unsigned long min_flt; unsigned long maj_flt; #ifdef CONFIG_POSIX_TIMERS /* 用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表*/ struct task_cputime cputime_expires; struct list_head cpu_timers[3]; #endif /* Process credentials: */ /* Tracer's credentials at attach: */ const struct cred __rcu *ptracer_cred; /* Objective and real subjective task credentials (COW): */ const struct cred __rcu *real_cred; /* Effective (overridable) subjective task credentials (COW): */ const struct cred __rcu *cred; /* * executable name, excluding path. * * - normally initialized setup_new_exec() * - access it with [gs]et_task_comm() * - lock it with task_lock() */ char comm[TASK_COMM_LEN]; struct nameidata *nameidata; #ifdef CONFIG_SYSVIPC /* 进程通信(SYSVIPC)*/ struct sysv_sem sysvsem; struct sysv_shm sysvshm; #endif #ifdef CONFIG_DETECT_HUNG_TASK unsigned long last_switch_count; unsigned long last_switch_time; #endif /* Filesystem information: */ struct fs_struct *fs; /* 用来表示进程与文件系统的联系,包括当前目录和根目录*/ /* Open file information: */ struct files_struct *files; /* 表示进程当前打开的文件*/ /* 命名空间 : */ /* 进程通信(SYSVIPC)*/ struct nsproxy *nsproxy; /* Signal handlers: */ struct signal_struct *signal; /* signal: 指向进程的信号描述符*/ struct sighand_struct *sighand; /* sighand: 指向进程的信号处理程序描述符*/ sigset_t blocked; /* 表示被阻塞信号的掩码*/ sigset_t real_blocked; /* 表示临时掩码*/ /* Restored if set_restore_sigmask() was used: */ sigset_t saved_sigmask; struct sigpending pending; /* 存放私有挂起信号的数据结构*/ unsigned long sas_ss_sp; /* 信号处理程序备用堆栈的地址*/ size_t sas_ss_size; /* 表示堆栈的大小*/ unsigned int sas_ss_flags; struct callback_head *task_works; /* 进程审计 */ struct audit_context *audit_context; #ifdef CONFIG_AUDITSYSCALL kuid_t loginuid; unsigned int sessionid; #endif struct seccomp seccomp; /* secure computing*/ /* Thread group tracking: */ /* 用于copy_process函数使用CLONE_PARENT标记时 */ u32 parent_exec_id; u32 self_exec_id; /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ spinlock_t alloc_lock; /* 用于保护资源分配或释放的自旋锁*/ /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; * task_rq_lock函数所使用的锁*/ struct wake_q_node wake_q; #ifdef CONFIG_RT_MUTEXES /* 基于PI协议的等待互斥锁,其中PI指的是priority inheritance/9优先级继承)*/ /* PI waiters blocked on a rt_mutex held by this task: */ struct rb_root_cached pi_waiters; /* Updated under owner's pi_lock and rq lock */ struct task_struct *pi_top_task; /* Deadlock detection and priority inheritance handling: */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* Mutex deadlock detection: */ struct mutex_waiter *blocked_on; /* 死锁检测*/ #endif #ifdef CONFIG_TRACE_IRQFLAGS /* 中断*/ unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL /* lockdep*/ u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; #endif #ifdef CONFIG_UBSAN unsigned int in_ubsan; #endif /* Journalling filesystem info: JFS文件系统 */ void *journal_info; /* Stacked block device info: 块设备链表*/ struct bio_list *bio_list; #ifdef CONFIG_BLOCK /* Stack plugging: */ struct blk_plug *plug; #endif /* VM state:内存回收 */ struct reclaim_state *reclaim_state; /* 存放块设备I/O数据流量信息*/ struct backing_dev_info *backing_dev_info; /* I/O调度器所使用的信息 */ struct io_context *io_context; /* Ptrace state: */ unsigned long ptrace_message; kernel_siginfo_t *last_siginfo; struct task_io_accounting ioac; #ifdef CONFIG_PSI /* Pressure stall state */ unsigned int psi_flags; #endif #ifdef CONFIG_TASK_XACCT /* Accumulated RSS usage: */ u64 acct_rss_mem1; /* Accumulated virtual memory usage: */ u64 acct_vm_mem1; /* stime + utime since last update: */ u64 acct_timexpd; #endif #ifdef CONFIG_CPUSETS /* Protected by ->alloc_lock: */ nodemask_t mems_allowed; /* Seqence number to catch updates: */ seqcount_t mems_allowed_seq; int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock: */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock: */ struct list_head cg_list; #endif #ifdef CONFIG_X86_CPU_RESCTRL u32 closid; u32 rmid; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_DEBUG_PREEMPT unsigned long preempt_disable_ip; #endif #ifdef CONFIG_NUMA /* Protected by alloc_lock: */ struct mempolicy *mempolicy; short il_prev; short pref_node_fork; #endif #ifdef CONFIG_NUMA_BALANCING int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; /* Migration stamp: */ u64 node_stamp; u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; struct numa_group *numa_group; /* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */ unsigned long *numa_faults; unsigned long total_numa_faults; /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */ unsigned long numa_faults_locality[3]; unsigned long numa_pages_migrated; #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_RSEQ struct rseq __user *rseq; u32 rseq_len; u32 rseq_sig; /* * RmW on rseq_event_mask must be performed atomically * with respect to preemption. */ unsigned long rseq_event_mask; #endif struct tlbflush_unmap_batch tlb_ubc; struct rcu_head rcu; /* Cache last used pipe for splice():管道 */ struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; /* 延迟计数*/ #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; unsigned int fail_nth; #endif /* * When (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for a dirty throttling pause: */ int nr_dirtied; int nr_dirtied_pause; /* Start of a write-and-pause period: */ unsigned long dirty_paused_when; #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * Time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. * time slack values,常用于poll和select函数 */ u64 timer_slack_ns; u64 default_timer_slack_ns; #ifdef CONFIG_KASAN unsigned int kasan_depth; #endif #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored address in ret_stack: */ int curr_ret_stack; int curr_ret_depth; /* Stack of return addresses for return function tracing:ftrace跟踪器 */ struct ftrace_ret_stack *ret_stack; /* Timestamp for last schedule: */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun: */ atomic_t trace_overrun; /* Pause tracing: */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* State flags for use by tracers: */ unsigned long trace; /* Bitmask and counter of trace recursion: */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_KCOV /* Coverage collection mode enabled for this task (0 if disabled): */ unsigned int kcov_mode; /* Size of the kcov_area: */ unsigned int kcov_size; /* Buffer for coverage collection: */ void *kcov_area; /* KCOV descriptor wired with this task or NULL: */ struct kcov *kcov; #endif #ifdef CONFIG_MEMCG struct mem_cgroup *memcg_in_oom; gfp_t memcg_oom_gfp_mask; int memcg_oom_order; /* Number of pages to reclaim on returning to userland: */ unsigned int memcg_nr_pages_over_high; /* Used by memcontrol for targeted memcg charge: */ struct mem_cgroup *active_memcg; #endif #ifdef CONFIG_BLK_CGROUP struct request_queue *throttle_queue; #endif #ifdef CONFIG_UPROBES struct uprobe_task *utask; #endif #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) unsigned int sequential_io; unsigned int sequential_io_avg; #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP unsigned long task_state_change; #endif int pagefault_disabled; #ifdef CONFIG_MMU struct task_struct *oom_reaper_list; #endif #ifdef CONFIG_VMAP_STACK struct vm_struct *stack_vm_area; #endif #ifdef CONFIG_THREAD_INFO_IN_TASK /* A live task holds one reference: */ atomic_t stack_refcount; #endif #ifdef CONFIG_LIVEPATCH int patch_state; #endif #ifdef CONFIG_SECURITY /* Used by LSM modules for access restriction: */ void *security; #endif #ifdef CONFIG_GCC_PLUGIN_STACKLEAK unsigned long lowest_stack; unsigned long prev_lowest_stack; #endif randomized_struct_fields_start /*M 随机分布,可以提高系统安全,防止黑客入侵 */ randomized_struct_fields_end /* CPU-specific state of this task: Do not put anything below here! */ struct thread_struct thread; }; sched_class: 该进程所属的调度类,目前内核中有实现以下四种: 1) static const struct sched_class fair_sched_class; 2) static const struct sched_class rt_sched_class; 3) static const struct sched_class idle_sched_class; 4) static const struct sched_class stop_sched_class; policy policy表示进程的调度策略,目前主要有以下五种: 1) #define SCHED_NORMAL 0: 用于普通进程,它们通过完全公平调度器来处理 2) #define SCHED_FIFO 1: 先来先服务调度,由实时调度类处理 3) #define SCHED_RR 2: 时间片轮转调度,由实时调度类处理 4) #define SCHED_BATCH 3: 用于非交互、CPU使用密集的批处理进程,通过完全公平调度器来处理,调度决策对此类进程给与"冷处理",它们绝不会抢占CFS调度器处理的另一个进程,因此不会干扰交互式进程,如果不打算用nice降低进程的静态优先级,同时又不希望该进程影响系统的交互性,最适合用该调度策略 5) #define SCHED_IDLE 5: 可用于次要的进程,其相对权重总是最小的,也通过完全公平调度器来处理。要注意的是,SCHED_IDLE不负责调度空闲进程,空闲进程由内核提供单独的机制来处理 只有root用户能通过sched_setscheduler()系统调用来改变调度策略 */
来源:https://www.cnblogs.com/DemonMaster/p/11783530.html