问题
I am using princomp
in R to perform PCA. My data matrix is huge (10K x 10K with each value up to 4 decimal points). It takes ~3.5 hours and ~6.5 GB of Physical memory on a Xeon 2.27 GHz processor.
Since I only want the first two components, is there a faster way to do this?
Update :
In addition to speed, Is there a memory efficient way to do this ?
It takes ~2 hours and ~6.3 GB of physical memory for calculating first two components using svd(,2,)
.
回答1:
You sometimes gets access to so-called 'economical' decompositions which allow you to cap the number of eigenvalues / eigenvectors. It looks like eigen()
and prcomp()
do not offer this, but svd()
allows you to specify the maximum number to compute.
On small matrices, the gains seem modest:
R> set.seed(42); N <- 10; M <- matrix(rnorm(N*N), N, N)
R> library(rbenchmark)
R> benchmark(eigen(M), svd(M,2,0), prcomp(M), princomp(M), order="relative")
test replications elapsed relative user.self sys.self user.child
2 svd(M, 2, 0) 100 0.021 1.00000 0.02 0 0
3 prcomp(M) 100 0.043 2.04762 0.04 0 0
1 eigen(M) 100 0.050 2.38095 0.05 0 0
4 princomp(M) 100 0.065 3.09524 0.06 0 0
R>
but the factor of three relative to princomp()
may be worth your while reconstructing princomp()
from svd()
as svd()
allows you to stop after two values.
回答2:
The 'svd' package provides the routines for truncated SVD / eigendecomposition via Lanczos algorithm. You can use it to calculate just first two principal components.
Here I have:
> library(svd)
> set.seed(42); N <- 1000; M <- matrix(rnorm(N*N), N, N)
> system.time(svd(M, 2, 0))
user system elapsed
7.355 0.069 7.501
> system.time(princomp(M))
user system elapsed
5.985 0.055 6.085
> system.time(prcomp(M))
user system elapsed
9.267 0.060 9.368
> system.time(trlan.svd(M, neig = 2))
user system elapsed
0.606 0.004 0.614
> system.time(trlan.svd(M, neig = 20))
user system elapsed
1.894 0.009 1.910
> system.time(propack.svd(M, neig = 20))
user system elapsed
1.072 0.011 1.087
回答3:
I tried the pcaMethods package's implementation of the nipals algorithm. By default it calculates the first 2 principal components. Turns out to be slower than the other suggested methods.
set.seed(42); N <- 10; M <- matrix(rnorm(N*N), N, N)
library(pcaMethods)
library(rbenchmark)
m1 <- pca(M, method="nipals", nPcs=2)
benchmark(pca(M, method="nipals"),
eigen(M), svd(M,2,0), prcomp(M), princomp(M), order="relative")
test replications elapsed relative user.self sys.self
3 svd(M, 2, 0) 100 0.02 1.0 0.02 0
2 eigen(M) 100 0.03 1.5 0.03 0
4 prcomp(M) 100 0.03 1.5 0.03 0
5 princomp(M) 100 0.05 2.5 0.05 0
1 pca(M, method = "nipals") 100 0.23 11.5 0.24 0
回答4:
The power method might be what you want. If you code it in R, which is not hard at all, I think you may find that it is no faster than the SVD approach suggested in other answer, which makes use of LAPACK compiled routines.
回答5:
you can use neural network approach to find the principal component. Basic description is given here.. http://www.heikohoffmann.de/htmlthesis/node26.html
First principal Component, y= w1*x1+w2*x2 and Second orthogonal Component can be calculated as q = w2*x1-w1*x2.
回答6:
The "gmodels" and "corpcor" R packages come with faster implementations of SVD and PCA. These perform similarly to the core versions for small matrices:
> set.seed(42); N <- 10; M <- matrix(rnorm(N*N), N*N, N)
> library("rbenchmark")
> library("gmodels")
> benchmark(svd(M,2,0), svd(M), gmodels::fast.svd(M), corpcor::fast.svd(M), prcomp(M), gmodels::fast.prcomp(M), princomp(M), order="relative")
test replications elapsed relative user.self sys.self user.child sys.child
1 svd(M, 2, 0) 100 0.005 1.0 0.005 0.000 0 0
2 svd(M) 100 0.006 1.2 0.005 0.000 0 0
3 gmodels::fast.svd(M) 100 0.007 1.4 0.006 0.000 0 0
4 corpcor::fast.svd(M) 100 0.007 1.4 0.007 0.000 0 0
6 gmodels::fast.prcomp(M) 100 0.014 2.8 0.014 0.000 0 0
5 prcomp(M) 100 0.015 3.0 0.014 0.001 0 0
7 princomp(M) 100 0.030 6.0 0.029 0.001 0 0
>
However, they provide a faster result for larger matrices (especially those with many rows).
> set.seed(42); N <- 10; M <- matrix(rnorm(N*N), N*N*N, N)
> library("rbenchmark")
> library("gmodels")
> benchmark(svd(M,2,0), svd(M), gmodels::fast.svd(M), corpcor::fast.svd(M), prcomp(M), gmodels::fast.prcomp(M), order="relative")
test replications elapsed relative user.self sys.self user.child sys.child
4 corpcor::fast.svd(M) 100 0.029 1.000 0.028 0.001 0 0
3 gmodels::fast.svd(M) 100 0.035 1.207 0.033 0.001 0 0
2 svd(M) 100 0.037 1.276 0.035 0.002 0 0
1 svd(M, 2, 0) 100 0.039 1.345 0.037 0.001 0 0
5 prcomp(M) 100 0.068 2.345 0.061 0.006 0 0
6 gmodels::fast.prcomp(M) 100 0.068 2.345 0.060 0.007 0 0
回答7:
I am surprised nobody mentioned the irlba package yet:
It is even a bit faster than svd
's propack.svd
,
provides with irlba::prcomp_irlba(X, n=2)
a stats::prcomp
-like interface for convenience and
did not require parameter adjustments in the following benchmark for rectangular matrices (2:1) of varying size. For matrices of size 6000x3000 it is 50 times faster than stats::prcomp
. For matrices smaller than 100x50 stats::svd
is still faster though.
library(microbenchmark)
library(tidyverse)
#install.packages("svd","corpcor","irlba","rsvd")
exprs <- rlang::exprs(
svd(M, 2, 2)$v,
prcomp(M)$rotation[,1:2],
irlba::prcomp_irlba(M, n=2)$rotation,
irlba::svdr(M, k=2)$v,
rsvd::rsvd(M, 2)$v,
svd::propack.svd(M, neig=2, opts=list(maxiter=100))$v,
corpcor::fast.svd(M)$v[,1:2]
)
set.seed(42)
tibble(N=c(10,30,100,300,1000,3000)) %>%
group_by(N) %>%
do({
M <- scale(matrix(rnorm(.$N*.$N*2), .$N*2, .$N))
microbenchmark(!!!exprs,
times=min(100, ceiling(3000/.$N)))%>%
as_tibble
}) %>%
ggplot(aes(x=N, y=time/1E9,color=expr)) +
geom_jitter(width=0.05) +
scale_x_log10("matrix size (2N x N)") +
scale_y_log10("time [s]") +
stat_summary(fun.y = median, geom="smooth") +
scale_color_discrete(labels = partial(str_wrap, width=30))
The randomized svd provided by rsvd
is even faster, but unfortunately, quite off:
set.seed(42)
N <- 1000
M <- scale(matrix(rnorm(N^2*2), N*2, N))
cor(set_colnames(sapply(exprs, function(x) eval(x)[,1]), sapply(exprs, deparse)))
svd(M, 2, 2)$v prcomp(M)$rotation[, 1:2] irlba::prcomp_irlba(M, n = 2)$rotation irlba::svdr(M, k = 2)$v rsvd::rsvd(M, 2)$v svd::propack.svd(M, neig = 2, opts = list(maxiter = 100))$v corpcor::fast.svd(M)$v[, 1:2]
svd(M, 2, 2)$v 1.0000000 1.0000000 -1.0000000 0.9998748 0.286184 1.0000000 1.0000000
prcomp(M)$rotation[, 1:2] 1.0000000 1.0000000 -1.0000000 0.9998748 0.286184 1.0000000 1.0000000
irlba::prcomp_irlba(M, n = 2)$rotation -1.0000000 -1.0000000 1.0000000 -0.9998748 -0.286184 -1.0000000 -1.0000000
irlba::svdr(M, k = 2)$v 0.9998748 0.9998748 -0.9998748 1.0000000 0.290397 0.9998748 0.9998748
rsvd::rsvd(M, 2)$v 0.2861840 0.2861840 -0.2861840 0.2903970 1.000000 0.2861840 0.2861840
svd::propack.svd(M, neig = 2, opts = list(maxiter = 100))$v 1.0000000 1.0000000 -1.0000000 0.9998748 0.286184 1.0000000 1.0000000
corpcor::fast.svd(M)$v[, 1:2] 1.0000000 1.0000000 -1.0000000 0.9998748 0.286184 1.0000000 1.0000000
This might bet better when the data actually has a structure though.
回答8:
You could write the function yourself and stop at 2 components. It is not too difficult. I have it laying around somewhere, if I find it I will post it.
来源:https://stackoverflow.com/questions/8299460/what-is-the-fastest-way-to-calculate-first-two-principal-components-in-r