How to extract info from scikits.learn classifier to then use in C code

孤人 提交于 2019-12-03 06:58:36

Yes your solution looks alright. To pass the raw memory of a numpy array directly to a C program you can use the ctypes helpers from numpy or wrap you C program with cython and call it directly by passing the numpy array (see the doc at http://cython.org for more details).

However, I am not sure that trying to speedup the prediction on a GPU is the easiest approach: kernel support vector machines are known to be slow at prediction time since their complexity directly depend on the number of support vectors which can be high for highly non-linear (multi-modal) problems.

Alternative approaches that are faster at prediction time include neural networks (probably more complicated or slower to train right than SVMs that only have 2 hyper-parameters C and gamma) or transforming your data with a non linear transformation based on distances to prototypes + thresholding + max pooling over image areas (only for image classification).

Finally you can also try to use NuSVC models whose regularization parameter nu has a direct impact on the number of support vectors in the fitted model: less support vectors mean faster prediction times (check the accuracy though, it will be a trade-off between prediction speed and accuracy in the end).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!