Applying the Sobel filter using scipy

╄→гoц情女王★ 提交于 2019-12-03 02:46:53

1) Use a higher precision. 2) You are only calculating the approximation of the derivative along the zero axis. The 2D Sobel operator is explained on Wikipedia. Try this code:

import numpy
import scipy
from scipy import ndimage

im = scipy.misc.imread('bike.jpg')
im = im.astype('int32')
dx = ndimage.sobel(im, 0)  # horizontal derivative
dy = ndimage.sobel(im, 1)  # vertical derivative
mag = numpy.hypot(dx, dy)  # magnitude
mag *= 255.0 / numpy.max(mag)  # normalize (Q&D)
scipy.misc.imsave('sobel.jpg', mag)

I couldn't comment on cgohlke's answer so I repeated his answer with a corrction. Parameter 0 is used for vertical derivative and 1 for horizontal derivative (first axis of an image array is y/vertical direction - rows, and second axis is x/horizontal direction - columns). Just wanted to warn other users, because I lost 1 hour searching for mistake in the wrong places.

import numpy
import scipy
from scipy import ndimage

im = scipy.misc.imread('bike.jpg')
im = im.astype('int32')
dx = ndimage.sobel(im, 1)  # horizontal derivative
dy = ndimage.sobel(im, 0)  # vertical derivative
mag = numpy.hypot(dx, dy)  # magnitude
mag *= 255.0 / numpy.max(mag)  # normalize (Q&D)
scipy.misc.imsave('sobel.jpg', mag)

or you can use :

def sobel_filter(im, k_size):

    im = im.astype(np.float)
    width, height, c = im.shape
    if c > 1:
        img = 0.2126 * im[:,:,0] + 0.7152 * im[:,:,1] + 0.0722 * im[:,:,2]
    else:
        img = im

    assert(k_size == 3 or k_size == 5);

    if k_size == 3:
        kh = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype = np.float)
        kv = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype = np.float)
    else:
        kh = np.array([[-1, -2, 0, 2, 1], 
                   [-4, -8, 0, 8, 4], 
                   [-6, -12, 0, 12, 6],
                   [-4, -8, 0, 8, 4],
                   [-1, -2, 0, 2, 1]], dtype = np.float)
        kv = np.array([[1, 4, 6, 4, 1], 
                   [2, 8, 12, 8, 2],
                   [0, 0, 0, 0, 0], 
                   [-2, -8, -12, -8, -2],
                   [-1, -4, -6, -4, -1]], dtype = np.float)

    gx = signal.convolve2d(img, kh, mode='same', boundary = 'symm', fillvalue=0)
    gy = signal.convolve2d(img, kv, mode='same', boundary = 'symm', fillvalue=0)

    g = np.sqrt(gx * gx + gy * gy)
    g *= 255.0 / np.max(g)

    #plt.figure()
    #plt.imshow(g, cmap=plt.cm.gray)      

    return g

for more see here

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!