building a .so that is also an executable

会有一股神秘感。 提交于 2019-11-26 17:19:41

Building your shared library with -pie option appears to give you everything you want:

/* pie.c */
#include <stdio.h>
int foo()
{
  printf("in %s %s:%d\n", __func__, __FILE__, __LINE__);
  return 42; 
}
int main() 
{ 
  printf("in %s %s:%d\n", __func__, __FILE__, __LINE__);
  return foo(); 
}


/* main.c */
#include <stdio.h>

extern int foo(void);
int main() 
{ 
  printf("in %s %s:%d\n", __func__, __FILE__, __LINE__);
  return foo(); 
}


$ gcc -fPIC -pie -o pie.so pie.c -Wl,-E
$ gcc main.c ./pie.so


$ ./pie.so
in main pie.c:9
in foo pie.c:4
$ ./a.out
in main main.c:6
in foo pie.c:4
$

P.S. glibc implements write(3) via system call because it doesn't have anywhere else to call (it is the lowest level already). This has nothing to do with being able to execute libc.so.6.

I suppose you'd have your ld -e point to an entry point which would then use the dlopen() family of functions to find and bootstrap the rest of the dynamic linker. Of course you'd have to ensure that dlopen() itself was either statically linked or you might have to implement enough of your own linker stub to get at it (using system call interfaces such as mmap() just as libc itself is doing.

None of that sounds "nice" to me. In fact just the thought of reading the glibc sources (and the ld-linux source code, as one example) enough to assess the size of the job sounds pretty hoary to me. It might also be a portability nightmare. There may be major differences between how Linux implements ld-linux and how the linkages are done under OpenSolaris, FreeBSD, and so on. (I don't know).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!