问题
Through trying to explain the Monty Hall problem to a friend during class yesterday, we ended up coding it in Python to prove that if you always swap, you will win 2/3 times. We came up with this:
import random as r
#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000
doors = ["goat", "goat", "car"]
wins = 0.0
losses = 0.0
for i in range(iterations):
n = r.randrange(0,3)
choice = doors[n]
if n == 0:
#print "You chose door 1."
#print "Monty opens door 2. There is a goat behind this door."
#print "You swapped to door 3."
wins += 1
#print "You won a " + doors[2] + "\n"
elif n == 1:
#print "You chose door 2."
#print "Monty opens door 1. There is a goat behind this door."
#print "You swapped to door 3."
wins += 1
#print "You won a " + doors[2] + "\n"
elif n == 2:
#print "You chose door 3."
#print "Monty opens door 2. There is a goat behind this door."
#print "You swapped to door 1."
losses += 1
#print "You won a " + doors[0] + "\n"
else:
print "You screwed up"
percentage = (wins/iterations) * 100
print "Wins: " + str(wins)
print "Losses: " + str(losses)
print "You won " + str(percentage) + "% of the time"
My friend thought this was a good way of going about it (and is a good simulation for it), but I have my doubts and concerns. Is it actually random enough?
The problem I have with it is that the all choices are kind of hard coded in.
Is this a good or bad 'simulation' for the Monty Hall problem? How come?
Can you come up with a better version?
回答1:
Your solution is fine, but if you want a stricter simulation of the problem as posed (and somewhat higher-quality Python;-), try:
import random
iterations = 100000
doors = ["goat"] * 2 + ["car"]
change_wins = 0
change_loses = 0
for i in xrange(iterations):
random.shuffle(doors)
# you pick door n:
n = random.randrange(3)
# monty picks door k, k!=n and doors[k]!="car"
sequence = range(3)
random.shuffle(sequence)
for k in sequence:
if k == n or doors[k] == "car":
continue
# now if you change, you lose iff doors[n]=="car"
if doors[n] == "car":
change_loses += 1
else:
change_wins += 1
print "Changing has %s wins and %s losses" % (change_wins, change_loses)
perc = (100.0 * change_wins) / (change_wins + change_loses)
print "IOW, by changing you win %.1f%% of the time" % perc
a typical output is:
Changing has 66721 wins and 33279 losses
IOW, by changing you win 66.7% of the time
回答2:
You mentioned that all the choices are hardcoded in. But if you look closer, you'll notice that what you think are 'choices' are actually not choices at all. Monty's decision is without loss of generality since he always chooses the door with the goat behind it. Your swapping is always determined by what Monty chooses, and since Monty's "choice" was actually not a choice, neither is yours. Your simulation gives the correct results..
回答3:
I like something like this.
#!/usr/bin/python
import random
CAR = 1
GOAT = 0
def one_trial( doors, switch=False ):
"""One trial of the Monty Hall contest."""
random.shuffle( doors )
first_choice = doors.pop( )
if switch==False:
return first_choice
elif doors.__contains__(CAR):
return CAR
else:
return GOAT
def n_trials( switch=False, n=10 ):
"""Play the game N times and return some stats."""
wins = 0
for n in xrange(n):
doors = [CAR, GOAT, GOAT]
wins += one_trial( doors, switch=switch )
print "won:", wins, "lost:", (n-wins), "avg:", (float(wins)/float(n))
if __name__=="__main__":
import sys
n_trials( switch=eval(sys.argv[1]), n=int(sys.argv[2]) )
$ ./montyhall.py True 10000
won: 6744 lost: 3255 avg: 0.674467446745
回答4:
I hadn't heard of the Monty Hall Problem before I stumbled across this question. I thought it was interesting, so I read about it and created a c# simulation. It's kind of goofy since it simulates the game-show and not just the problem.
I published the source and release on codeplex:
http://montyhall.codeplex.com
回答5:
Here's my version ...
import random
wins = 0
for n in range(1000):
doors = [1, 2, 3]
carDoor = random.choice(doors)
playerDoor = random.choice(doors)
hostDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))
# To stick, just comment out the next line.
(playerDoor, ) = set(doors) - set([playerDoor, hostDoor]) # Player swaps doors.
if playerDoor == carDoor:
wins += 1
print str(round(wins / float(n) * 100, 2)) + '%'
回答6:
Here is an interactive version:
from random import shuffle, choice
cars,goats,iters= 0, 0, 100
for i in range(iters):
doors = ['goat A', 'goat B', 'car']
shuffle(doors)
moderator_door = 'car'
#Turn 1:
selected_door = choice(doors)
print selected_door
doors.remove(selected_door)
print 'You have selected a door with an unknown object'
#Turn 2:
while moderator_door == 'car':
moderator_door = choice(doors)
doors.remove(moderator_door)
print 'Moderator has opened a door with ', moderator_door
#Turn 3:
decision=raw_input('Wanna change your door? [yn]')
if decision=='y':
prise = doors[0]
print 'You have a door with ', prise
elif decision=='n':
prise = selected_door
print 'You have a door with ', prise
else:
prise = 'ERROR'
iters += 1
print 'ERROR:unknown command'
if prise == 'car':
cars += 1
elif prise != 'ERROR':
goats += 1
print '==============================='
print ' RESULTS '
print '==============================='
print 'Goats:', goats
print 'Cars :', cars
回答7:
My solution with list comprehension to simulate the problem
from random import randint
N = 1000
def simulate(N):
car_gate=[randint(1,3) for x in range(N)]
gate_sel=[randint(1,3) for x in range(N)]
score = sum([True if car_gate[i] == gate_sel[i] or ([posible_gate for posible_gate in [1,2,3] if posible_gate != gate_sel[i]][randint(0,1)] == car_gate[i]) else False for i in range(N)])
return 'you win %s of the time when you change your selection.' % (float(score) / float(N))
print simulate(N)
回答8:
Not mine sample
# -*- coding: utf-8 -*-
#!/usr/bin/python -Ou
# Written by kocmuk.ru, 2008
import random
num = 10000 # number of games to play
win = 0 # init win count if donot change our first choice
for i in range(1, num): # play "num" games
if random.randint(1,3) == random.randint(1,3): # if win at first choice
win +=1 # increasing win count
print "I donot change first choice and win:", win, " games"
print "I change initial choice and win:", num-win, " games" # looses of "not_change_first_choice are wins if changing
回答9:
I found this to be the most intuitive way of solving the problem.
import random
# game_show will return True/False if the participant wins/loses the car:
def game_show(knows_bayes):
doors = [i for i in range(3)]
# Let the car be behind this door
car = random.choice(doors)
# The participant chooses this door..
choice = random.choice(doors)
# ..so the host opens another (random) door with no car behind it
open_door = random.choice([i for i in doors if i not in [car, choice]])
# If the participant knows_bayes she will switch doors now
if knows_bayes:
choice = [i for i in doors if i not in [choice, open_door]][0]
# Did the participant win a car?
if choice == car:
return True
else:
return False
# Let us run the game_show() for two participants. One knows_bayes and the other does not.
wins = [0, 0]
runs = 100000
for x in range(0, runs):
if game_show(True):
wins[0] += 1
if game_show(False):
wins[1] += 1
print "If the participant knows_bayes she wins %d %% of the time." % (float(wins[0])/runs*100)
print "If the participant does NOT knows_bayes she wins %d %% of the time." % (float(wins[1])/runs*100)
This outputs something like
If the participant knows_bayes she wins 66 % of the time.
If the participant does NOT knows_bayes she wins 33 % of the time.
回答10:
Read a chapter about the famous Monty Hall problem today. This is my solution.
import random
def one_round():
doors = [1,1,0] # 1==goat, 0=car
random.shuffle(doors) # shuffle doors
choice = random.randint(0,2)
return doors[choice]
#If a goat is chosen, it means the player loses if he/she does not change.
#This method returns if the player wins or loses if he/she changes. win = 1, lose = 0
def hall():
change_wins = 0
N = 10000
for index in range(0,N):
change_wins += one_round()
print change_wins
hall()
回答11:
Yet another "proof," this time with Python 3. Note the use of generators to select 1) which door Monty opens, and 2) which door the player switches to.
import random
items = ['goat', 'goat', 'car']
num_trials = 100000
num_wins = 0
for trial in range(num_trials):
random.shuffle(items)
player = random.randrange(3)
monty = next(i for i, v in enumerate(items) if i != player and v != 'car')
player = next(x for x in range(3) if x not in (player, monty))
if items[player] == 'car':
num_wins += 1
print('{}/{} = {}'.format(num_wins, num_trials, num_wins / num_trials))
回答12:
Monty never opens the door with the car - that's the whole point of the show (he isn't your friend an has knowledge of what is behind each door)
回答13:
Another code sample is available at: http://standardwisdom.com/softwarejournal/code-samples/monty-hall-python/
The code is a bit longer and may not use some of Python's cool features, but I hope it is nicely readable. Used Python precisely because I didn't have any experience in it, so feedback is appreciated.
回答14:
Here is different variant I find most intuitive. Hope this helps!
import random
class MontyHall():
"""A Monty Hall game simulator."""
def __init__(self):
self.doors = ['Door #1', 'Door #2', 'Door #3']
self.prize_door = random.choice(self.doors)
self.contestant_choice = ""
self.monty_show = ""
self.contestant_switch = ""
self.contestant_final_choice = ""
self.outcome = ""
def Contestant_Chooses(self):
self.contestant_choice = random.choice(self.doors)
def Monty_Shows(self):
monty_choices = [door for door in self.doors if door not in [self.contestant_choice, self.prize_door]]
self.monty_show = random.choice(monty_choices)
def Contestant_Revises(self):
self.contestant_switch = random.choice([True, False])
if self.contestant_switch == True:
self.contestant_final_choice = [door for door in self.doors if door not in [self.contestant_choice, self.monty_show]][0]
else:
self.contestant_final_choice = self.contestant_choice
def Score(self):
if self.contestant_final_choice == self.prize_door:
self.outcome = "Win"
else:
self.outcome = "Lose"
def _ShowState(self):
print "-" * 50
print "Doors %s" % self.doors
print "Prize Door %s" % self.prize_door
print "Contestant Choice %s" % self.contestant_choice
print "Monty Show %s" % self.monty_show
print "Contestant Switch %s" % self.contestant_switch
print "Contestant Final Choice %s" % self.contestant_final_choice
print "Outcome %s" % self.outcome
print "-" * 50
Switch_Wins = 0
NoSwitch_Wins = 0
Switch_Lose = 0
NoSwitch_Lose = 0
for x in range(100000):
game = MontyHall()
game.Contestant_Chooses()
game.Monty_Shows()
game.Contestant_Revises()
game.Score()
# Tally Up the Scores
if game.contestant_switch and game.outcome == "Win": Switch_Wins = Switch_Wins + 1
if not(game.contestant_switch) and game.outcome == "Win": NoSwitch_Wins = NoSwitch_Wins + 1
if game.contestant_switch and game.outcome == "Lose": Switch_Lose = Switch_Lose + 1
if not(game.contestant_switch) and game.outcome == "Lose": NoSwitch_Lose = NoSwitch_Lose + 1
print Switch_Wins * 1.0 / (Switch_Wins + Switch_Lose)
print NoSwitch_Wins * 1.0 / (NoSwitch_Wins + NoSwitch_Lose)
The learning is still the same, that switching increases your chances of winning, 0.665025416127 vs 0.33554730611 from the above run.
回答15:
Here's one I made earlier:
import random
def game():
"""
Set up three doors, one randomly with a car behind and two with
goats behind. Choose a door randomly, then the presenter takes away
one of the goats. Return the outcome based on whether you stuck with
your original choice or switched to the other remaining closed door.
"""
# Neither stick or switch has won yet, so set them both to False
stick = switch = False
# Set all of the doors to goats (zeroes)
doors = [ 0, 0, 0 ]
# Randomly change one of the goats for a car (one)
doors[random.randint(0, 2)] = 1
# Randomly choose one of the doors out of the three
choice = doors[random.randint(0, 2)]
# If our choice was a car (a one)
if choice == 1:
# Then stick wins
stick = True
else:
# Otherwise, because the presenter would take away the other
# goat, switching would always win.
switch = True
return (stick, switch)
I also had code to run the game many times, and stored this and the sample output in this repostory.
回答16:
Here is my solution to the MontyHall problem implemented in python.
This solution makes use of numpy for speed, it also allows you to change the number of doors.
def montyhall(Trials:"Number of trials",Doors:"Amount of doors",P:"Output debug"):
N = Trials # the amount of trial
DoorSize = Doors+1
Answer = (nprand.randint(1,DoorSize,N))
OtherDoor = (nprand.randint(1,DoorSize,N))
UserDoorChoice = (nprand.randint(1,DoorSize,N))
# this will generate a second door that is not the user's selected door
C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]
while (len(C)>0):
OtherDoor[C] = nprand.randint(1,DoorSize,len(C))
C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]
# place the car as the other choice for when the user got it wrong
D = np.where( (UserDoorChoice!=Answer)>0 )[0]
OtherDoor[D] = Answer[D]
'''
IfUserStays = 0
IfUserChanges = 0
for n in range(0,N):
IfUserStays += 1 if Answer[n]==UserDoorChoice[n] else 0
IfUserChanges += 1 if Answer[n]==OtherDoor[n] else 0
'''
IfUserStays = float(len( np.where((Answer==UserDoorChoice)>0)[0] ))
IfUserChanges = float(len( np.where((Answer==OtherDoor)>0)[0] ))
if P:
print("Answer ="+str(Answer))
print("Other ="+str(OtherDoor))
print("UserDoorChoice="+str(UserDoorChoice))
print("OtherDoor ="+str(OtherDoor))
print("results")
print("UserDoorChoice="+str(UserDoorChoice==Answer)+" n="+str(IfUserStays)+" r="+str(IfUserStays/N))
print("OtherDoor ="+str(OtherDoor==Answer)+" n="+str(IfUserChanges)+" r="+str(IfUserChanges/N))
return IfUserStays/N, IfUserChanges/N
回答17:
I just found that global ratio of winning is 50% and ratio of losing is 50%... It is how the proportion on winning or losing based on selected final option.
- %Wins (staying): 16.692
- %Wins (switching): 33.525
- %Losses (staying) : 33.249
- %Losses (switching) : 16.534
Here is my code, that differs from yours + with commented comments so you can run it with small iterations :
import random as r
#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000
doors = ["goat", "goat", "car"]
wins_staying = 0
wins_switching = 0
losses_staying = 0
losses_switching = 0
for i in range(iterations):
# Shuffle the options
r.shuffle(doors)
# print("Doors configuration: ", doors)
# Host will always know where the car is
car_option = doors.index("car")
# print("car is in Option: ", car_option)
# We set the options for the user
available_options = [0, 1 , 2]
# The user selects an option
user_option = r.choice(available_options)
# print("User option is: ", user_option)
# We remove an option
if(user_option != car_option ) :
# In the case the door is a goat door on the user
# we just leave the car door and the user door
available_options = [user_option, car_option]
else:
# In the case the door is the car door
# we try to get one random door to keep
available_options.remove(available_options[car_option])
goat_option = r.choice(available_options)
available_options = [goat_option, car_option]
new_user_option = r.choice(available_options)
# print("User final decision is: ", new_user_option)
if new_user_option == car_option :
if(new_user_option == user_option) :
wins_staying += 1
else :
wins_switching += 1
else :
if(new_user_option == user_option) :
losses_staying += 1
else :
losses_switching += 1
print("%Wins (staying): " + str(wins_staying / iterations * 100))
print("%Wins (switching): " + str(wins_switching / iterations * 100))
print("%Losses (staying) : " + str(losses_staying / iterations * 100))
print("%Losses (switching) : " + str(losses_switching / iterations * 100))
来源:https://stackoverflow.com/questions/1247863/is-this-a-good-or-bad-simulation-for-monty-hall-how-come