How can I draw a log-normalized imshow plot with a colorbar representing the raw data in matplotlib

坚强是说给别人听的谎言 提交于 2019-12-03 01:24:06

Yes, there is! Use LogNorm. Here is a code excerpt from a utility that I wrote to display confusion matrices on a log scale.

from pylab import figure, cm
from matplotlib.colors import LogNorm
# C = some matrix
f = figure(figsize=(6.2,5.6))
ax = f.add_axes([0.17, 0.02, 0.72, 0.79])
axcolor = f.add_axes([0.90, 0.02, 0.03, 0.79])
im = ax.matshow(C, cmap=cm.gray_r, norm=LogNorm(vmin=0.01, vmax=1))
t = [0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0]
f.colorbar(im, cax=axcolor, ticks=t, format='$%.2f$')
f.show()
Gilles

If you just want the image to be log-normalized (to enhance details), but not the data (to preserve physical values), then you have to apply the transformation on the colormap itself. You can do that with the function cmap_map() given in the cookbook: https://scipy-cookbook.readthedocs.io/items/Matplotlib_ColormapTransformations.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!