Why does C++ output negative numbers when using modulo?

时间秒杀一切 提交于 2019-11-26 16:31:56

On x86 (and other processor architectures), integer division and modulo are carried out by a single operation, idiv (div for unsigned values), which produces both quotient and remainder (for word-sized arguments, in AX and DX respectively). This is used in the C library function divmod, which can be optimised by the compiler to a single instruction!

Integer division respects two rules:

  • Non-integer quotients are rounded towards zero; and
  • the equation dividend = quotient*divisor + remainder is satisfied by the results.

Accordingly, when dividing a negative number by a positive number, the quotient will be negative (or zero).

So this behaviour can be seen as the result of a chain of local decisions:

  • Processor instruction set design optimises for the common case (division) over the less common case (modulo);
  • Consistency (rounding towards zero, and respecting the division equation) is preferred over mathematical correctness;
  • C prefers efficiency and simplicitly (especially given the tendency to view C as a "high level assembler"); and
  • C++ prefers compatibility with C.

What are arguments for this specification?

One of the design goals of C++ is to map efficiently to hardware. If the underlying hardware implements division in a way that produces negative remainders, then that's what you'll get if you use % in C++. That's all there is to it really.

Is there a place where the people who create such standards discuss about it?

You will find interesting discussions on comp.lang.c++.moderated and, to a lesser extent, comp.lang.c++

Back in the day, someone designing the x86 instruction set decided it was right and good to round integer division toward zero rather than round down. (May the fleas of a thousand camels nest in his mother's beard.) To keep some semblance of math-correctness, operator REM, which is pronounced "remainder", had to behave accordingly. DO NOT read this: https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_73/rzatk/REM.htm

I warned you. Later someone doing the C spec decided it would be conforming for a compiler to do it either the right way or the x86 way. Then a committee doing the C++ spec decided to do it the C way. Then later yet, after this question was posted, a C++ committee decided to standardize on the wrong way. Now we are stuck with it. Many a programmer has written the following function or something like it. I have probably done it at least a dozen times.

 inline int mod(int a, int b) {int ret = a%b; return ret>=0? ret: ret+b; }

There goes your efficiency.

These days I use essentially the following, with some type_traits stuff thrown in. (Thanks to Clearer for a comment that gave me an idea for an improvement using latter day C++. See below.)

<strike>template<class T>
inline T mod(T a, T b) {
    assert(b > 0);
    T ret = a%b;
    return (ret>=0)?(ret):(ret+b);
}</strike>

template<>
inline unsigned mod(unsigned a, unsigned b) {
    assert(b > 0);
    return a % b;
}

True fact: I lobbied the Pascal standards committee to do mod the right way until they relented. To my horror, they did integer division the wrong way. So they do not even match.

EDIT: Clearer gave me an idea. I am working on a new one.

#include <type_traits>

template<class T1, class T2>
inline T1 mod(T1 a, T2 b) {
    assert(b > 0);
    T1 ret = a % b;
    if constexpr  ( std::is_unsigned_v<T1>)
    {
        return ret;
    } else {
        return (ret >= 0) ? (ret) : (ret + b);
    }
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!