How to correctly use scikit-learn's Gaussian Process for a 2D-inputs, 1D-output regression?

倖福魔咒の 提交于 2019-12-02 23:56:21

You're using two features to predict a third. Rather than a 3D plot like plot_surface, it's usually clearer if you use a 2D plot that's able to show information about a third dimension, like hist2d or pcolormesh. Here's a complete example using data/code similar to that in the question:

from itertools import product
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

X = np.array([[0,0],[2,0],[4,0],[6,0],[8,0],[10,0],[12,0],[14,0],[16,0],[0,2],
                    [2,2],[4,2],[6,2],[8,2],[10,2],[12,2],[14,2],[16,2]])

y = np.array([-54,-60,-62,-64,-66,-68,-70,-72,-74,-60,-62,-64,-66,
                    -68,-70,-72,-74,-76])

# Input space
x1 = np.linspace(X[:,0].min(), X[:,0].max()) #p
x2 = np.linspace(X[:,1].min(), X[:,1].max()) #q
x = (np.array([x1, x2])).T

kernel = C(1.0, (1e-3, 1e3)) * RBF([5,5], (1e-2, 1e2))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=15)

gp.fit(X, y)

x1x2 = np.array(list(product(x1, x2)))
y_pred, MSE = gp.predict(x1x2, return_std=True)

X0p, X1p = x1x2[:,0].reshape(50,50), x1x2[:,1].reshape(50,50)
Zp = np.reshape(y_pred,(50,50))

# alternative way to generate equivalent X0p, X1p, Zp
# X0p, X1p = np.meshgrid(x1, x2)
# Zp = [gp.predict([(X0p[i, j], X1p[i, j]) for i in range(X0p.shape[0])]) for j in range(X0p.shape[1])]
# Zp = np.array(Zp).T

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
ax.pcolormesh(X0p, X1p, Zp)

plt.show()

Output:

Kinda plain looking, but so was my example data. In general, you shouldn't expect to get particular interesting resulting with this few data points.

Also, if you do want the surface plot, you can just replace the pcolormesh line with what you originally had (more or less):

ax = fig.add_subplot(111, projection='3d')            
surf = ax.plot_surface(X0p, X1p, Zp, rstride=1, cstride=1, cmap='jet', linewidth=0, antialiased=False)

Output:

I'm also fairly new using scikit-learn gaussian process. But after some effort, I managed to implement a 3-d gaussian process regression successfully. There are a lot of examples of 1-d regression but nothing on higher input dimensions.

Perhaps you could show the values that you are using.

I found that sometimes the format in which you send the inputs can produce some issues. Try formatting input X as:

X = np.array([param1, param2]).T

and format the output as:

gp.fit(X, y.reshape(-1,1))

Also, as I understood, the implementation assumes a mean function m=0. If the output you are trying to regress presents an average value which differs significantly from 0 you should normalize it (that will probably solve your problem). Standardizing the parameter space will help as well.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!