Preserve index-string correspondence spark string indexer

寵の児 提交于 2019-12-02 23:21:43

Label mapping can extracted from the column metadata:

meta = [
    f.metadata for f in indexed_df.schema.fields if f.name == "categoryIndex"
]
meta[0]
## {'ml_attr': {'name': 'category', 'type': 'nominal', 'vals': ['a', 'c', 'b']}}

where ml_attr.vals provide a mapping between position and label:

dict(enumerate(meta[0]["ml_attr"]["vals"]))
## {0: 'a', 1: 'c', 2: 'b'}

Spark 1.6+

You can convert numeric values to labels using IndexToString. This will use column metadata as shown above.

from pyspark.ml.feature import IndexToString

idx_to_string = IndexToString(
    inputCol="categoryIndex", outputCol="categoryValue")

idx_to_string.transform(indexed_df).drop("id").distinct().show()
## +--------+-------------+-------------+
## |category|categoryIndex|categoryValue|
## +--------+-------------+-------------+
## |       b|          2.0|            b|
## |       a|          0.0|            a|
## |       c|          1.0|            c|
## +--------+-------------+-------------+

Spark <= 1.5

It is a dirty hack but you can simply extract labels from a Java indexer as follows:

from pyspark.ml.feature import StringIndexerModel

# A simple monkey patch so we don't have to _call_java later 
def labels(self):
    return self._call_java("labels")

StringIndexerModel.labels = labels

# Fit indexer model
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex").fit(df)

# Extract mapping
mapping = dict(enumerate(indexer.labels()))
mapping
## {0: 'a', 1: 'c', 2: 'b'}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!