Find all nearest neighbors within a specific distance

生来就可爱ヽ(ⅴ<●) 提交于 2019-12-02 20:52:38

You could use a scipy.spatial.cKDTree:

import numpy as np
import scipy.spatial as spatial
points = np.array([(1, 2), (3, 4), (4, 5)])
point_tree = spatial.cKDTree(points)
# This finds the index of all points within distance 1 of [1.5,2.5].
print(point_tree.query_ball_point([1.5, 2.5], 1))
# [0]

# This gives the point in the KDTree which is within 1 unit of [1.5, 2.5]
print(point_tree.data[point_tree.query_ball_point([1.5, 2.5], 1)])
# [[1 2]]

# More than one point is within 3 units of [1.5, 1.6].
print(point_tree.data[point_tree.query_ball_point([1.5, 1.6], 3)])
# [[1 2]
#  [3 4]]

Here is an example showing how you can find all the nearest neighbors to an array of points, with one call to point_tree.query_ball_point:

import numpy as np
import scipy.spatial as spatial
import matplotlib.pyplot as plt
np.random.seed(2015)

centers = [(1, 2), (3, 4), (4, 5)]
points = np.concatenate([pt+np.random.random((10, 2))*0.5 
                         for pt in centers])
point_tree = spatial.cKDTree(points)

cmap = plt.get_cmap('copper')
colors = cmap(np.linspace(0, 1, len(centers)))
for center, group, color  in zip(centers, point_tree.query_ball_point(centers, 0.5), colors):
   cluster = point_tree.data[group]
   x, y = cluster[:, 0], cluster[:, 1]
   plt.scatter(x, y, c=color, s=200)

plt.show()

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!