Correct idiom for managing multiple chained resources in try-with-resources block?

做~自己de王妃 提交于 2019-11-26 15:38:53
Tom Hawtin - tackline

Here's my take on the alternatives:

1)

try (BufferedWriter bw = new BufferedWriter(new FileWriter(file))) {
    bw.write(text);
}

For me, the best thing coming to Java from traditional C++ 15 years ago was that you could trust your program. Even if things are in the muck and going wrong, which they often do, I want the rest of the code to be on best behaviour and smelling of roses. Indeed, the BufferedWriter might throw an exception here. Running out of memory wouldn't be unusual, for instance. For other decorators, do you know which of the java.io wrapper classes throw a checked exception from their constructors? I don't. Doesn't do code understandability much good if you rely upon that sort of obscure knowledge.

Also there's the "destruction". If there is an error condition, then you probably don't want to be flushing rubbish to a file that needs deleting (code for that not shown). Although, of course, deleting the file is also another interesting operation to do as error handling.

Generally you want finally blocks to be as short and reliable as possible. Adding flushes does not help this goal. For many releases some of the buffering classes in the JDK had a bug where an exception from flush within close caused close on the decorated object not be called. Whilst that has been fixed for some time, expect it from other implementations.

2)

try (
    FileWriter fw = new FileWriter(file);
    BufferedWriter bw = new BufferedWriter(fw)
) {
    bw.write(text);
}

We're still flushing in the implicit finally block (now with repeated close - this gets worse as you add more decorators), but the construction is safe and we have to implicit finally blocks so even a failed flush doesn't prevent resource release.

3)

try (FileWriter fw = new FileWriter(file)) {
    BufferedWriter bw = new BufferedWriter(fw);
    bw.write(text);
}

There's a bug here. Should be:

try (FileWriter fw = new FileWriter(file)) {
    BufferedWriter bw = new BufferedWriter(fw);
    bw.write(text);
    bw.flush();
}

Some poorly implemented decorators are in fact resource and will need to be closed reliably. Also some streams may need to be closed in a particular way (perhaps they are doing compression and need to write bits to finish off, and can't just flush everything.

Verdict

Although 3 is a technically superior solution, software development reasons make 2 the better choice. However, try-with-resource is still an inadequate fix and you should stick with the Execute Around idiom, which should have a clearer syntax with closures in Java SE 8.

The first style is the one suggested by Oracle. BufferedWriter doesn't throw checked exceptions, so if any exception is thrown, the program is not expected to recover from it, making resource recover mostly moot.

Mostly because it could happen in a thread, with the thread dieing but the program still continuing -- say, there was a temporary memory outage that wasn't long enough to seriously impair the rest of the program. It's a rather corner case, though, and if it happens often enough to make resource leak a problem, the try-with-resources is the least of your problems.

Jeanne Boyarsky

Option 4

Change your resources to be Closeable, not AutoClosable if you can. The fact that the constructors can be chained implies it isn't unheard of to close the resource twice. (This was true before ARM too.) More on this below.

Option 5

Don't use ARM and code very carefully to ensure close() isn't called twice!

Option 6

Don't use ARM and have your finally close() calls in a try/catch themselves.

Why I don't think this problem is unique to ARM

In all these examples, the finally close() calls should be in a catch block. Left out for readability.

No good because fw can be closed twice. (which is fine for FileWriter but not in your hypothetial example):

FileWriter fw = null;
BufferedWriter bw = null;
try {
  fw = new FileWriter(file);
  bw = new BufferedWriter(fw);
  bw.write(text);
} finally {
  if ( fw != null ) fw.close();
  if ( bw != null ) bw.close();
}

No good because fw not closed if exception on constructing a BufferedWriter. (again, can't happen, but in your hypothetical example):

FileWriter fw = null;
BufferedWriter bw = null;
try {
  fw = new FileWriter(file);
  bw = new BufferedWriter(fw);
  bw.write(text);
} finally {
  if ( bw != null ) bw.close();
}

I just wanted to build on Jeanne Boyarsky's suggestion of not using ARM but making sure the FileWriter is always closed exactly once. Don't think there are any problems here...

FileWriter fw = null;
BufferedWriter bw = null;
try {
    fw = new FileWriter(file);
    bw = new BufferedWriter(fw);
    bw.write(text);
} finally {
    if (bw != null) bw.close();
    else if (fw != null) fw.close();
}

I guess since ARM is just syntactic sugar, we can't always use it to replace finally blocks. Just like we can't always use a for-each loop to do something that is possible with iterators.

To concur with earlier comments: simplest is (2) to use Closeable resources and declare them in order in the try-with-resources clause. If you only have AutoCloseable, you can wrap them in another (nested) class that just checks that close is only called once (Facade Pattern), e.g. by having private bool isClosed;. In practice even Oracle just (1) chains the constructors and doesn't correctly handle exceptions partway through the chain.

Alternatively, you can manually create a chained resource, using a static factory method; this encapsulates the chain, and handle cleanup if it fails part-way:

static BufferedWriter createBufferedWriterFromFile(File file)
  throws IOException {
  // If constructor throws an exception, no resource acquired, so no release required.
  FileWriter fileWriter = new FileWriter(file);
  try {
    return new BufferedWriter(fileWriter);  
  } catch (IOException newBufferedWriterException) {
    try {
      fileWriter.close();
    } catch (IOException closeException) {
      // Exceptions in cleanup code are secondary to exceptions in primary code (body of try),
      // as in try-with-resources.
      newBufferedWriterException.addSuppressed(closeException);
    }
    throw newBufferedWriterException;
  }
}

You can then use it as a single resource in a try-with-resources clause:

try (BufferedWriter writer = createBufferedWriterFromFile(file)) {
  // Work with writer.
}

The complexity comes from handling multiple exceptions; otherwise it's just "close resources that you've acquired so far". A common practice seems to be to first initialize the variable that holds the object that holds the resource to null (here fileWriter), and then include a null check in the cleanup, but that seems unnecessary: if the constructor fails, there's nothing to clean up, so we can just let that exception propagate, which simplifies the code a little.

You could probably do this generically:

static <T extends AutoCloseable, U extends AutoCloseable, V>
    T createChainedResource(V v) throws Exception {
  // If constructor throws an exception, no resource acquired, so no release required.
  U u = new U(v);
  try {
    return new T(u);  
  } catch (Exception newTException) {
    try {
      u.close();
    } catch (Exception closeException) {
      // Exceptions in cleanup code are secondary to exceptions in primary code (body of try),
      // as in try-with-resources.
      newTException.addSuppressed(closeException);
    }
    throw newTException;
  }
}

Similarly, you can chain three resources, etc.

As a mathematical aside, you could even chain three times by chaining two resources at a time, and it would be associative, meaning you would get the same object on success (because the constructors are associative), and same exceptions if there were a failure in any of the constructors. Assuming you added an S to the above chain (so you start with a V and end with an S, by applying U, T, and S in turn), you get the same either if you first chain S and T, then U, corresponding to (ST)U, or if you first chained T and U, then S, corresponding to S(TU). However, it would be clearer to just write out an explicit three-fold chain in a single factory function.

Since your resources are nested, your try-with clauses should also be:

try (FileWriter fw=new FileWriter(file)) {
    try (BufferedWriter bw=new BufferedWriter(fw)) {
        bw.write(text);
    } catch (IOException ex) {
        // handle ex
    }
} catch (IOException ex) {
    // handle ex
}

I would say don't use ARM and go on with Closeable. Use method like,

public void close(Closeable... closeables) {
    for (Closeable closeable: closeables) {
       try {
           closeable.close();
         } catch (IOException e) {
           // you can't much for this
          }
    }

}

Also you should consider calling close of BufferedWriter as it is not just delegating the close to FileWriter , but it does some cleanup like flushBuffer.

My solution is to do a "extract method" refactoring, as following:

static AutoCloseable writeFileWriter(FileWriter fw, String txt) throws IOException{
    final BufferedWriter bw  = new BufferedWriter(fw);
    bw.write(txt);
    return new AutoCloseable(){

        @Override
        public void close() throws IOException {
            bw.flush();
        }

    };
}

printToFile can be written either

static void printToFile(String text, File file) {
    try (FileWriter fw = new FileWriter(file)) {
        AutoCloseable w = writeFileWriter(fw, text);
        w.close();
    } catch (Exception ex) {
        // handle ex
    }
}

or

static void printToFile(String text, File file) {
    try (FileWriter fw = new FileWriter(file);
        AutoCloseable w = writeFileWriter(fw, text)){

    } catch (Exception ex) {
        // handle ex
    }
}

For class lib designers, I will suggest them extend the AutoClosable interface with an additional method to suppress the close. In this case we can then manually control the close behavior.

For language designers, the lesson is that adding a new feature could mean adding a lot others. In this Java case, obviously ARM feature will work better with a resource ownership transfer mechanism.

UPDATE

Originally the code above requires @SuppressWarning since the BufferedWriter inside the function requires close().

As suggested by a comment, if flush() to be called before close the writer, we need to do so before any return (implicit or explicit) statements inside the try block. There is currently no way to ensure the caller doing this I think, so this must be documented for writeFileWriter.

UPDATE AGAIN

The above update makes @SuppressWarning unnecessary since it require the function to return the resource to the caller, so itself does not necessary being closed. Unfortunately, this pull us back to the beginning of the situation: the warning is now moved back to the caller side.

So to properly solve this, we need a customised AutoClosable that whenever it closes, the underline BufferedWriter shall be flush()ed. Actually, this shows us another way to bypass the warning, since the BufferWriter is never closed in either way.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!